Topics in Current Chemistry

, 374:85 | Cite as

Preparation of Horizontal Single-Walled Carbon Nanotubes Arrays

Review
  • 458 Downloads
Part of the following topical collections:
  1. Single-Walled Carbon Nanotubes: Preparation, Property and Application

Abstract

The synthesis of SWNTs has achieved great success with the development of synthetic methodologies. From the viewpoint of exploiting the exceptional electrical properties of single-walled carbon nanotubes (SWNTs) in advanced applications, one of the most difficult challenges is how to assemble the SWNTs with high degrees of alignment and purity in electronic conducting (mainly semiconducting) behavior into functional nanodevices. Numerous approaches have been developed to reach this goal, which could be divided into two categories. One is direct preparation of SWNT arrays on the substrate, and the other is self-assembly of pre-sorted SWNTs from solution. The former one obtains SWNT arrays via chemical vapor deposition (CVD) growth, with the sorting realized by either selective growth or post-growth treatment; the latter one assembles SWNT into arrays from solution, with the sorting process occurring before the aligning process in most cases. This review will highlight both in situ and post-synthetic approaches for preparing samples of aligned arrays of SWNTs with well-defined electronic properties—including the working mechanism for directional growth of SWNTs, growth/sorting methods like catalyst engineering, cloning/cap engineering, in situ etching, and ex situ selective removal/etching for surface-grown SWNT sample, and assembling technologies from SWNT solution such as dielectrophoresis, adsorption on lithographically patterned and/or chemically functionalized substrates, Langmuir–Blodgett and Langmuir–Schaefer techniques, and evaporation-driven self-assembly—and research efforts towards direct growth of arrays of complex SWNT structures.

Keywords

SWNT array Semiconducting Selective growth Self-assembly 

Notes

Acknowledgements

This work was supported by the NSFC (21233001, 51432002, and 51272006), MOST (2016YFA0200101 and 2016YFA0200104).

References

  1. 1.
    Nanot S, Hároz EH, Kim J-H, Hauge RH, Kono J (2012) Optoelectronic properties of single-wall carbon nanotubes. Adv Mater 24(36):4977–4994CrossRefGoogle Scholar
  2. 2.
    Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nat Nanotechnol 2(10):605–615CrossRefGoogle Scholar
  3. 3.
    Franklin AD (2013) Electronics: the road to carbon nanotube transistors. Nature 498(7455):443–444CrossRefGoogle Scholar
  4. 4.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605CrossRefGoogle Scholar
  5. 5.
    Dresselhaus MS, Dresselhaus G, Saito R (1995) Nanotubes physics of carbon nanotubes. Carbon 33(7):883–891CrossRefGoogle Scholar
  6. 6.
    Druzhinina T, Hoeppener S, Schubert US (2011) Strategies for post-synthesis alignment and immobilization of carbon nanotubes. Adv Mater 23(8):953–970CrossRefGoogle Scholar
  7. 7.
    Chen Y, Zhang Y, Hu Y, Kang L, Zhang S, Xie H, Liu D, Zhao Q, Li Q, Zhang J (2014) State of the art of single-walled carbon nanotube synthesis on surfaces. Adv Mater 26(34):5898–5922CrossRefGoogle Scholar
  8. 8.
    Chen Y, Zhang J (2014) Chemical vapor deposition growth of single-walled carbon nanotubes with controlled structures for nanodevice applications. Acc Chem Res 47(8):2273–2281CrossRefGoogle Scholar
  9. 9.
    Hersam MC (2008) Progress towards monodisperse single-walled carbon nanotubes. Nat Nanotechnol 3(7):387–394CrossRefGoogle Scholar
  10. 10.
    Zhang H, Wu B, Hu W, Liu Y (2011) Separation and/or selective enrichment of single-walled carbon nanotubes based on their electronic properties. Chem Soc Rev 40(3):1324–1336CrossRefGoogle Scholar
  11. 11.
    Pesetski AA, Baumgardner JE, Krishnaswamy SV, Zhang H, Adam JD, Kocabas C, Banks T, Rogers JA (2008) A 500-MHz carbon nanotube transistor oscillator. Appl Phys Lett 93(12):123506CrossRefGoogle Scholar
  12. 12.
    Kocabas C, H-s Kim, Banks T, Rogers JA, Pesetski AA, Baumgardner JE, Krishnaswamy SV, Zhang H (2008) Radio frequency analog electronics based on carbon nanotube transistors. Proc Natl Acad Sci USA 105(5):1405–1409CrossRefGoogle Scholar
  13. 13.
    Shulaker MM, Hills G, Patil N, Wei H, Chen H-Y, Wong HSP, Mitra S (2013) Carbon nanotube computer. Nature 501(7468):526–530CrossRefGoogle Scholar
  14. 14.
    Shulaker MM, Van Rethy J, Wu TF, Suriyasena Liyanage L, Wei H, Li Z, Pop E, Gielen G, Wong HSP, Mitra S (2014) Carbon nanotube circuit integration up to sub-20 nm channel lengths. ACS Nano 8(4):3434–3443CrossRefGoogle Scholar
  15. 15.
    Wen Q, Zhang R, Qian W, Wang Y, Tan P, Nie J, Wei F (2010) Growing 20 cm long DWNTs/TWNTs at a rapid growth rate of 80–90 μm/s. Chem Mater 22(4):1294–1296CrossRefGoogle Scholar
  16. 16.
    Han S, Liu X, Zhou C (2005) Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire. J Am Chem Soc 127(15):5294–5295CrossRefGoogle Scholar
  17. 17.
    Ismach A, Segev L, Wachtel E, Joselevich E (2004) Atomic-step-templated formation of single wall carbon nanotube patterns. Angew Chem Int Ed 43(45):6140–6143CrossRefGoogle Scholar
  18. 18.
    Peng B, Jiang S, Zhang Y, Zhang J (2011) Enrichment of metallic carbon nanotubes by electric field-assisted chemical vapor deposition. Carbon 49(7):2555–2560CrossRefGoogle Scholar
  19. 19.
    Hu Y, Kang L, Zhao Q, Zhong H, Zhang S, Yang L, Wang Z, Lin J, Li Q, Zhang Z, Peng L, Liu Z, Zhang J (2015) Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts. Nat Commun 6:6099CrossRefGoogle Scholar
  20. 20.
    Zhang S, Hu Y, Wu J, Liu D, Kang L, Zhao Q, Zhang J (2015) Selective scission of C–O and C–C bonds in ethanol using bimetal catalysts for the preferential growth of semiconducting SWNT arrays. J Am Chem Soc 137(3):1012–1015CrossRefGoogle Scholar
  21. 21.
    Liu J, Wang C, Tu X, Liu B, Chen L, Zheng M, Zhou C (2012) Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy. Nat Commun 3:1199CrossRefGoogle Scholar
  22. 22.
    Li J, Liu K, Liang S, Zhou W, Pierce M, Wang F, Peng L, Liu J (2014) Growth of high-density-aligned and semiconducting-enriched single-walled carbon nanotubes: decoupling the conflict between density and selectivity. ACS Nano 8(1):554–562CrossRefGoogle Scholar
  23. 23.
    Hong G, Zhou M, Zhang R, Hou S, Choi W, Woo YS, Choi J-Y, Liu Z, Zhang J (2011) Separation of metallic and semiconducting single-walled carbon nanotube arrays by “scotch tape”. Angew Chem Int Ed 50(30):6819–6823CrossRefGoogle Scholar
  24. 24.
    Sarker BK, Shekhar S, Khondaker SI (2011) Semiconducting enriched carbon nanotube aligned arrays of tunable density and their electrical transport properties. ACS Nano 5(8):6297–6305CrossRefGoogle Scholar
  25. 25.
    He X, Gao W, Xie L, Li B, Zhang Q, Lei S, Robinson JM, Hároz EH, Doorn SK, Wang W, Vajtai R, Ajayan PM, Adams WW, Hauge RH, Kono J (2016) Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes. Nat Nanotechnol 11(7):633–638CrossRefGoogle Scholar
  26. 26.
    Joo Y, Brady GJ, Arnold MS, Gopalan P (2014) Dose-controlled, floating evaporative self-assembly and alignment of semiconducting carbon nanotubes from organic solvents. Langmuir 30(12):3460–3466CrossRefGoogle Scholar
  27. 27.
    Xiao J, Dunham S, Liu P, Zhang Y, Kocabas C, Moh L, Huang Y, Hwang K-C, Lu C, Huang W, Rogers JA (2009) Alignment controlled growth of single-walled carbon nanotubes on quartz substrates. Nano Lett 9(12):4311–4319CrossRefGoogle Scholar
  28. 28.
    Kocabas C, Hur S-H, Gaur A, Meitl MA, Shim M, Rogers JA (2005) Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 1(11):1110–1116CrossRefGoogle Scholar
  29. 29.
    Ibrahim I, Bachmatiuk A, Warner JH, Büchner B, Cuniberti G, Rümmeli MH (2012) CVD-grown horizontally aligned single-walled carbon nanotubes: synthesis routes and growth mechanisms. Small 8(13):1973–1992CrossRefGoogle Scholar
  30. 30.
    Huang S, Maynor B, Cai X, Liu J (2003) Ultralong, well-aligned single-walled carbon nanotube architectures on surfaces. Adv Mater 15(19):1651–1655CrossRefGoogle Scholar
  31. 31.
    Su M, Li Y, Maynor B, Buldum A, Lu JP, Liu J (2000) Lattice-oriented growth of single-walled carbon nanotubes. J Phys Chem B 104(28):6505–6508CrossRefGoogle Scholar
  32. 32.
    Zhang Y, Chang A, Cao J, Wang Q, Kim W, Li Y, Morris N, Yenilmez E, Kong J, Dai H (2001) Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl Phys Lett 79(19):3155–3157CrossRefGoogle Scholar
  33. 33.
    Huang S, Woodson M, Smalley R, Liu J (2004) Growth mechanism of oriented long single walled carbon nanotubes using “fast-heating” chemical vapor deposition process. Nano Lett 4(6):1025–1028CrossRefGoogle Scholar
  34. 34.
    Xie H, Zhang R, Zhang Y, Li P, Jin Y, Wei F (2013) Growth of high-density parallel arrays of ultralong carbon nanotubes with catalysts pinned by silica nanospheres. Carbon 52:535–540CrossRefGoogle Scholar
  35. 35.
    Zhou W, Han Z, Wang J, Zhang Y, Jin Z, Sun X, Zhang Y, Yan C, Li Y (2006) Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett 6(12):2987–2990CrossRefGoogle Scholar
  36. 36.
    Zhang B, Hong G, Peng B, Zhang J, Choi W, Kim JM, Choi J-Y, Liu Z (2009) Grow single-walled carbon nanotubes cross-bar in one batch. J Phys Chem C 113(14):5341–5344CrossRefGoogle Scholar
  37. 37.
    Jin Z, Chu H, Wang J, Hong J, Tan W, Li Y (2007) Ultralow feeding gas flow guiding growth of large-scale horizontally aligned single-walled carbon nanotube arrays. Nano Lett 7(7):2073–2079CrossRefGoogle Scholar
  38. 38.
    Zheng LX, O’Connell MJ, Doorn SK, Liao XZ, Zhao YH, Akhadov EA, Hoffbauer MA, Roop BJ, Jia QX, Dye RC, Peterson DE, Huang SM, Liu J, Zhu YT (2004) Ultralong single-wall carbon nanotubes. Nat Mater 3(10):673–676CrossRefGoogle Scholar
  39. 39.
    Hofmann M, Nezich D, Reina A, Kong J (2008) In-situ sample rotation as a tool to understand chemical vapor deposition growth of long aligned carbon nanotubes. Nano Lett 8(12):4122–4127CrossRefGoogle Scholar
  40. 40.
    Ago H, Nakamura K, K-i Ikeda, Uehara N, Ishigami N, Tsuji M (2005) Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface. Chem Phys Lett 408(4–6):433–438CrossRefGoogle Scholar
  41. 41.
    Ismach A, Kantorovich D, Joselevich E (2005) Carbon nanotube graphoepitaxy: highly oriented growth by faceted nanosteps. J Am Chem Soc 127(33):11554–11555CrossRefGoogle Scholar
  42. 42.
    Orofeo CM, Ago H, Ikuta T, Takahasi K, Tsuji M (2010) Growth of horizontally aligned single-walled carbon nanotubes on anisotropically etched silicon substrate. Nanoscale 2(9):1708–1714CrossRefGoogle Scholar
  43. 43.
    Chen Y, Hu Y, Fang Y, Li P, Feng C, Zhang J (2012) Lattice-directed growth of single-walled carbon nanotubes with controlled geometries on surface. Carbon 50(9):3295–3297CrossRefGoogle Scholar
  44. 44.
    Chen Y, Shen Z, Xu Z, Hu Y, Xu H, Wang S, Guo X, Zhang Y, Peng L, Ding F, Liu Z, Zhang J (2013) Helicity-dependent single-walled carbon nanotube alignment on graphite for helical angle and handedness recognition. Nat Commun 4:2205Google Scholar
  45. 45.
    Joselevich E (2009) Self-organized growth of complex nanotube patterns on crystal surfaces. Nano Res 2(10):743–754CrossRefGoogle Scholar
  46. 46.
    Ago H, Imamoto K, Ishigami N, Ohdo R, K-i Ikeda, Tsuji M (2007) Competition and cooperation between lattice-oriented growth and step-templated growth of aligned carbon nanotubes on sapphire. Appl Phys Lett 90(12):123112CrossRefGoogle Scholar
  47. 47.
    Li P, Zhang X, Li J, Liu J (2015) Graphoepitaxial effect in the guided growth of SWNT arrays on quartz. J Mater Chem C 3(37):9678–9683CrossRefGoogle Scholar
  48. 48.
    Wang B, Ma Y, Li N, Wu Y, Li F, Chen Y (2010) Facile and scalable fabrication of well-aligned and closely packed single-walled carbon nanotube films on various substrates. Adv Mater 22(28):3067–3070CrossRefGoogle Scholar
  49. 49.
    Kang SJ, Kocabas C, Ozel T, Shim M, Pimparkar N, Alam MA, Rotkin SV, Rogers JA (2007) High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat Nanotechnol 2(4):230–236CrossRefGoogle Scholar
  50. 50.
    Kang L, Hu Y, Liu L, Wu J, Zhang S, Zhao Q, Ding F, Li Q, Zhang J (2015) Growth of close-packed semiconducting single-walled carbon nanotube arrays using oxygen-deficient TiO2 nanoparticles as catalysts. Nano Lett 15(1):403–409CrossRefGoogle Scholar
  51. 51.
    Kang L, Hu Y, Zhong H, Si J, Zhang S, Zhao Q, Lin J, Li Q, Zhang Z, Peng L, Zhang J (2015) Large-area growth of ultra-high-density single-walled carbon nanotube arrays on sapphire surface. Nano Res 8(11):3694–3703CrossRefGoogle Scholar
  52. 52.
    Ago H, Uehara N, K-i Ikeda, Ohdo R, Nakamura K, Tsuji M (2006) Synthesis of horizontally-aligned single-walled carbon nanotubes with controllable density on sapphire surface and polarized Raman spectroscopy. Chem Phys Lett 421(4–6):399–403CrossRefGoogle Scholar
  53. 53.
    Hong SW, Banks T, Rogers JA (2010) Improved density in aligned arrays of single-walled carbon nanotubes by sequential chemical vapor deposition on quartz. Adv Mater 22(16):1826–1830CrossRefGoogle Scholar
  54. 54.
    Wang C, Ryu K, De Arco LG, Badmaev A, Zhang J, Lin X, Che Y, Zhou C (2010) Synthesis and device applications of high-density aligned carbon nanotubes using low-pressure chemical vapor deposition and stacked multiple transfer. Nano Res 3(12):831–842CrossRefGoogle Scholar
  55. 55.
    Shulaker MM, Wei H, Patil N, Provine J, Chen H-Y, Wong HSP, Mitra S (2011) Linear increases in carbon nanotube density through multiple transfer technique. Nano Lett 11(5):1881–1886CrossRefGoogle Scholar
  56. 56.
    Zhou W, Ding L, Yang S, Liu J (2011) Synthesis of high-density, large-diameter, and aligned single-walled carbon nanotubes by multiple-cycle growth methods. ACS Nano 5(5):3849–3857CrossRefGoogle Scholar
  57. 57.
    Liu H, Takagi D, Chiashi S, Homma Y (2010) Transfer and alignment of random single-walled carbon nanotube films by contact printing. ACS Nano 4(2):933–938CrossRefGoogle Scholar
  58. 58.
    Ago H, Nakamura Y, Ogawa Y, Tsuji M (2011) Combinatorial catalyst approach for high-density growth of horizontally aligned single-walled carbon nanotubes on sapphire. Carbon 49(1):176–186CrossRefGoogle Scholar
  59. 59.
    Kocabas C, Kang SJ, Ozel T, Shim M, Rogers JA (2007) Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors. J Phys Chem C 111(48):17879–17886CrossRefGoogle Scholar
  60. 60.
    Ding L, Yuan D, Liu J (2008) Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J Am Chem Soc 130(16):5428–5429CrossRefGoogle Scholar
  61. 61.
    Zhou W, Rutherglen C, Burke PJ (2008) Wafer scale synthesis of dense aligned arrays of single-walled carbon nanotubes. Nano Res 1(2):158–165CrossRefGoogle Scholar
  62. 62.
    Yao Y, Li Q, Zhang J, Liu R, Jiao L, Zhu YT, Liu Z (2007) Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions. Nat Mater 6(4):283–286CrossRefGoogle Scholar
  63. 63.
    Geblinger N, Ismach A, Joselevich E (2008) Self-organized nanotube serpentines. Nat Nanotechnol 3(4):195–200CrossRefGoogle Scholar
  64. 64.
    Yao Y, Dai X, Feng C, Zhang J, Liang X, Ding L, Choi W, Choi J-Y, Kim JM, Liu Z (2009) Crinkling ultralong carbon nanotubes into serpentines by a controlled landing process. Adv Mater 21(41):4158–4162CrossRefGoogle Scholar
  65. 65.
    Huang S, Cai X, Liu J (2003) Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J Am Chem Soc 125(19):5636–5637CrossRefGoogle Scholar
  66. 66.
    Ismach A, Joselevich E (2006) Orthogonal self-assembly of carbon nanotube crossbar architectures by simultaneous graphoepitaxy and field-directed growth. Nano Lett 6(8):1706–1710CrossRefGoogle Scholar
  67. 67.
    Wagner RS, Ellis WC (1964) Vapor–liquid–solid mechanism of single crystal growth. Appl Phys Lett 4(5):89–90CrossRefGoogle Scholar
  68. 68.
    Kong J, Soh HT, Cassell AM, Quate CF, Dai H (1998) Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395(6705):878–881CrossRefGoogle Scholar
  69. 69.
    Liu B, Ren W, Gao L, Li S, Pei S, Liu C, Jiang C, Cheng H-M (2009) Metal-catalyst-free growth of single-walled carbon nanotubes. J Am Chem Soc 131(6):2082–2083CrossRefGoogle Scholar
  70. 70.
    Hofmann S, Csányi G, Ferrari AC, Payne MC, Robertson J (2005) Surface diffusion: the low activation energy path for nanotube growth. Phys Rev Lett 95(3):036101CrossRefGoogle Scholar
  71. 71.
    Takagi D, Hibino H, Suzuki S, Kobayashi Y, Homma Y (2007) Carbon nanotube growth from semiconductor nanoparticles. Nano Lett 7(8):2272–2275CrossRefGoogle Scholar
  72. 72.
    Yang F, Wang X, Li M, Liu X, Zhao X, Zhang D, Zhang Y, Yang J, Li Y (2016) Templated synthesis of single-walled carbon nanotubes with specific structure. Acc Chem Res 49(4):606–615CrossRefGoogle Scholar
  73. 73.
    Yang F, Wang X, Zhang D, Yang J, LuoDa XuZ, Wei J, Wang J-Q, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F, Li Y (2014) Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510(7506):522–524CrossRefGoogle Scholar
  74. 74.
    Harutyunyan AR, Chen G, Paronyan TM, Pigos EM, Kuznetsov OA, Hewaparakrama K, Kim SM, Zakharov D, Stach EA, Sumanasekera GU (2009) Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science 326(5949):116–120CrossRefGoogle Scholar
  75. 75.
    Zhao Q, Xu Z, Hu Y, Ding F, Zhang J (2016) Chemical vapor deposition synthesis of near-zigzag single-walled carbon nanotubes with stable tube-catalyst interface. Sci Adv 2(5):1501729CrossRefGoogle Scholar
  76. 76.
    Zhang S, Tong L, Hu Y, Kang L, Zhang J (2015) Diameter-specific growth of semiconducting SWNT arrays using uniform Mo2C solid catalyst. J Am Chem Soc 137(28):8904–8907CrossRefGoogle Scholar
  77. 77.
    Zhang F, Hou P-X, Liu C, Cheng H-M (2016) Epitaxial growth of single-wall carbon nanotubes. Carbon 102:181–197CrossRefGoogle Scholar
  78. 78.
    Yao Y, Feng C, Zhang J, Liu Z (2009) “Cloning” of single-walled carbon nanotubes via open-end growth mechanism. Nano Lett 9(4):1673–1677CrossRefGoogle Scholar
  79. 79.
    Yu X, Zhang J, Choi W, Choi J-Y, Kim JM, Gan L, Liu Z (2010) Cap formation engineering: from opened C60 to single-walled carbon nanotubes. Nano Lett 10(9):3343–3349CrossRefGoogle Scholar
  80. 80.
    Ibrahim I, Bachmatiuk A, Grimm D, Popov A, Makharza S, Knupfer M, Büchner B, Cuniberti G, Rümmeli MH (2012) Understanding high-yield catalyst-free growth of horizontally aligned single-walled carbon nanotubes nucleated by activated C60 species. ACS Nano 6(12):10825–10834CrossRefGoogle Scholar
  81. 81.
    Smalley RE, Li Y, Moore VC, Price BK, Colorado R, Schmidt HK, Hauge RH, Barron AR, Tour JM (2006) Single wall carbon nanotube amplification: en route to a type-specific growth mechanism. J Am Chem Soc 128(49):15824–15829CrossRefGoogle Scholar
  82. 82.
    Ding F, Harutyunyan AR, Yakobson BI (2009) Dislocation theory of chirality-controlled nanotube growth. Proc Natl Acad Sci USA 106(8):2506–2509CrossRefGoogle Scholar
  83. 83.
    Liu B, Liu J, Tu X, Zhang J, Zheng M, Zhou C (2013) Chirality-dependent vapor-phase epitaxial growth and termination of single-wall carbon nanotubes. Nano Lett 13(9):4416–4421CrossRefGoogle Scholar
  84. 84.
    Liu B, Liu J, Li H-B, Bhola R, Jackson EA, Scott LT, Page A, Irle S, Morokuma K, Zhou C (2015) Nearly exclusive growth of small diameter semiconducting single-wall carbon nanotubes from organic chemistry synthetic end-cap molecules. Nano Lett 15(1):586–595CrossRefGoogle Scholar
  85. 85.
    Sanchez-Valencia JR, Dienel T, Groning O, Shorubalko I, Mueller A, Jansen M, Amsharov K, Ruffieux P, Fasel R (2014) Controlled synthesis of single-chirality carbon nanotubes. Nature 512(7512):61–64CrossRefGoogle Scholar
  86. 86.
    Strano MS, Dyke CA, Usrey ML, Barone PW, Allen MJ, Shan H, Kittrell C, Hauge RH, Tour JM, Smalley RE (2003) Electronic structure control of single-walled carbon nanotube functionalization. Science 301(5639):1519–1522CrossRefGoogle Scholar
  87. 87.
    Ding L, Tselev A, Wang J, Yuan D, Chu H, McNicholas TP, Li Y, Liu J (2009) Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett 9(2):800–805CrossRefGoogle Scholar
  88. 88.
    Kang L, Zhang S, Li Q, Zhang J (2016) Growth of horizontal semiconducting SWNT arrays with density higher than 100 tubes/μm using ethanol/methane chemical vapor deposition. J Am Chem Soc 138(21):6727–6730CrossRefGoogle Scholar
  89. 89.
    Che Y, Wang C, Liu J, Liu B, Lin X, Parker J, Beasley C, Wong HSP, Zhou C (2012) Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock. ACS Nano 6(8):7454–7462CrossRefGoogle Scholar
  90. 90.
    Zhou W, Zhan S, Ding L, Liu J (2012) General rules for selective growth of enriched semiconducting single walled carbon nanotubes with water vapor as in situ etchant. J Am Chem Soc 134(34):14019–14026CrossRefGoogle Scholar
  91. 91.
    Hong G, Zhang B, Peng B, Zhang J, Choi WM, Choi J-Y, Kim JM, Liu Z (2009) Direct growth of semiconducting single-walled carbon nanotube array. J Am Chem Soc 131(41):14642–14643CrossRefGoogle Scholar
  92. 92.
    Jin SH, Dunham SN, Song J, Xie X, Kim J-h LuC, Islam A, Du F, Kim J, Felts J, Li Y, Xiong F, Wahab MA, Menon M, Cho E, Grosse KL, Lee DJ, Chung HU, Pop E, Alam MA, King WP, Huang Y, Rogers JA (2013) Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes. Nat Nanotechnol 8(5):347–355CrossRefGoogle Scholar
  93. 93.
    Xie X, Jin SH, Wahab MA, Islam AE, Zhang C, Du F, Seabron E, Lu T, Dunham SN, Cheong HI, Tu Y-C, Guo Z, Chung HU, Li Y, Liu Y, Lee J-H, Song J, Huang Y, Alam MA, Wilson WL, Rogers JA (2014) Microwave purification of large-area horizontally aligned arrays of single-walled carbon nanotubes. Nat Commun 5:5332CrossRefGoogle Scholar
  94. 94.
    Du F, Felts JR, Xie X, Song J, Li Y, Rosenberger MR, Islam AE, Jin SH, Dunham SN, Zhang C, Wilson WL, Huang Y, King WP, Rogers JA (2014) Laser-induced nanoscale thermocapillary flow for purification of aligned arrays of single-walled carbon nanotubes. ACS Nano 8(12):12641–12649CrossRefGoogle Scholar
  95. 95.
    Zhang G, Qi P, Wang X, Lu Y, Li X, Tu R, Bangsaruntip S, Mann D, Zhang L, Dai H (2006) Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 314(5801):974–977CrossRefGoogle Scholar
  96. 96.
    Zhang Y, Zhang Y, Xian X, Zhang J, Liu Z (2008) Sorting out semiconducting single-walled carbon nanotube arrays by preferential destruction of metallic tubes using xenon-lamp irradiation. J Phys Chem C 112(10):3849–3856CrossRefGoogle Scholar
  97. 97.
    Li P, Zhang J (2011) Sorting out semiconducting single-walled carbon nanotube arrays by preferential destruction of metallic tubes using water. J Mater Chem 21(32):11815–11821CrossRefGoogle Scholar
  98. 98.
    Hu Y, Chen Y, Li P, Zhang J (2013) Sorting out semiconducting single-walled carbon nanotube arrays by washing off metallic tubes using SDS aqueous solution. Small 9(8):1306–1311CrossRefGoogle Scholar
  99. 99.
    Krupke R, Hennrich F, Hv Löhneysen, Kappes MM (2003) Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301(5631):344–347CrossRefGoogle Scholar
  100. 100.
    Krupke R, Hennrich F, Weber HB, Kappes MM, v. Löhneysen H (2003) Simultaneous deposition of metallic bundles of single-walled carbon nanotubes using ac-dielectrophoresis. Nano Lett 3(8):1019–1023CrossRefGoogle Scholar
  101. 101.
    Vijayaraghavan A, Blatt S, Weissenberger D, Oron-Carl M, Hennrich F, Gerthsen D, Hahn H, Krupke R (2007) Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano Lett 7(6):1556–1560CrossRefGoogle Scholar
  102. 102.
    Shekhar S, Stokes P, Khondaker SI (2011) Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis. ACS Nano 5(3):1739–1746CrossRefGoogle Scholar
  103. 103.
    Cao Q, S-j Han, Tulevski GS (2014) Fringing-field dielectrophoretic assembly of ultrahigh-density semiconducting nanotube arrays with a self-limited pitch. Nat Commun 5:5071CrossRefGoogle Scholar
  104. 104.
    Bornhoeft LR, Castillo AC, Smalley PR, Kittrell C, James DK, Brinson BE, Rybolt TR, Johnson BR, Cherukuri TK, Cherukuri P (2016) Teslaphoresis of carbon nanotubes. ACS Nano 10(4):4873–4881CrossRefGoogle Scholar
  105. 105.
    LeMieux MC, Roberts M, Barman S, Jin YW, Kim JM, Bao Z (2008) Self-sorted, aligned nanotube networks for thin-film transistors. Science 321(5885):101–104CrossRefGoogle Scholar
  106. 106.
    Park H, Afzali A, Han S-J, Tulevski GS, Franklin AD, Tersoff J, Hannon JB, Haensch W (2012) High-density integration of carbon nanotubes via chemical self-assembly. Nat Nanotechnol 7(12):787–791CrossRefGoogle Scholar
  107. 107.
    Wu J, Jiao L, Antaris A, Choi CL, Xie L, Wu Y, Diao S, Chen C, Chen Y, Dai H (2013) Self-assembly of semiconducting single-walled carbon nanotubes into dense, aligned rafts. Small 9(24):4142–4148CrossRefGoogle Scholar
  108. 108.
    Wu J, Antaris A, Gong M, Dai H (2014) Top-down patterning and self-assembly for regular arrays of semiconducting single-walled carbon nanotubes. Adv Mater 26(35):6151–6156CrossRefGoogle Scholar
  109. 109.
    Penzo E, Palma M, Chenet DA, Ao G, Zheng M, Hone JC, Wind SJ (2016) Directed assembly of single wall carbon nanotube field effect transistors. ACS Nano 10(2):2975–2981CrossRefGoogle Scholar
  110. 110.
    Penzo E, Palma M, Wang R, Cai H, Zheng M, Wind SJ (2015) Directed assembly of end-functionalized single wall carbon nanotube segments. Nano Lett 15(10):6547–6552CrossRefGoogle Scholar
  111. 111.
    Cao Q, S-j Han, Tulevski GS, Zhu Y, Lu DD, Haensch W (2013) Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat Nanotechnol 8(3):180–186CrossRefGoogle Scholar
  112. 112.
    Li X, Zhang L, Wang X, Shimoyama I, Sun X, Seo W-S, Dai H (2007) Langmuir–Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J Am Chem Soc 129(16):4890–4891CrossRefGoogle Scholar
  113. 113.
    Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653):827–829CrossRefGoogle Scholar
  114. 114.
    Engel M, Small JP, Steiner M, Freitag M, Green AA, Hersam MC, Avouris P (2008) Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. ACS Nano 2(12):2445–2452CrossRefGoogle Scholar
  115. 115.
    Shastry TA, Seo J-WT, Lopez JJ, Arnold HN, Kelter JZ, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013) Large-area, electronically monodisperse, aligned single-walled carbon nanotube thin films fabricated by evaporation-driven self-assembly. Small 9(1):45–51CrossRefGoogle Scholar
  116. 116.
    Brady GJ, Way AJ, Safron NS, Evensen HT, Gopalan P, Arnold MS (2016) Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Sci Adv 2(9):1601240CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Center for Nanochemistry, Beijing Science and Engineering Technology Research Center for Low Dimensional Carbon Materials, College of Chemistry and Molecular EngineeringPeking UniversityBeijingPeople’s Republic of China
  2. 2.Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced MaterialsNanjing University of Posts and TelecommunicationsNanjingPeople’s Republic of China

Personalised recommendations