Semiconductor Quantum Dots with Photoresponsive Ligands
- 374 Downloads
Abstract
Photochromic or photocaged ligands can be anchored to the outer shell of semiconductor quantum dots in order to control the photophysical properties of these inorganic nanocrystals with optical stimulations. One of the two interconvertible states of the photoresponsive ligands can be designed to accept either an electron or energy from the excited quantum dots and quench their luminescence. Under these conditions, the reversible transformations of photochromic ligands or the irreversible cleavage of photocaged counterparts translates into the possibility to switch luminescence with external control. As an alternative to regulating the photophysics of a quantum dot via the photochemistry of its ligands, the photochemistry of the latter can be controlled by relying on the photophysics of the former. The transfer of excitation energy from a quantum dot to a photocaged ligand populates the excited state of the species adsorbed on the nanocrystal to induce a photochemical reaction. This mechanism, in conjunction with the large two-photon absorption cross section of quantum dots, can be exploited to release nitric oxide or to generate singlet oxygen under near-infrared irradiation. Thus, the combination of semiconductor quantum dots and photoresponsive ligands offers the opportunity to assemble nanostructured constructs with specific functions on the basis of electron or energy transfer processes. The photoswitchable luminescence and ability to photoinduce the release of reactive chemicals, associated with the resulting systems, can be particularly valuable in biomedical research and can, ultimately, lead to the realization of imaging probes for diagnostic applications as well as to therapeutic agents for the treatment of cancer.
Keywords
Electron transfer Energy transfer Photocages Photochromism Quantum dotsNotes
Acknowledgments
The National Science Foundation (CHE-1049860) is acknowledged for financial support.
References
- 1.Graham-Rowe D (2008) Nat Photonics 3:307–309CrossRefGoogle Scholar
- 2.Tartakovskii A (2012) Quantum dots: optics, electron transport and future applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
- 3.Masumoto Y, Takagahara T (2002) Semiconductor quantum dots. Physics, spectroscopy and applications. Springer-Verlag, HeidelbergGoogle Scholar
- 4.Woggon U (2013) Optical properties of semiconductor quantum dots. Springer-Verlag, HeidelbergGoogle Scholar
- 5.Karmakar S (2014) Fabrication, modeling and application. Novel three-state quantum dot gate field effect transistor. Springer, New DelhiCrossRefGoogle Scholar
- 6.Wu J, Wang ZM (2014) Quantum dot solar cells. Springer, New YorkCrossRefGoogle Scholar
- 7.Wang ZM (2012) Quantum dot devices. Springer, New YorkCrossRefGoogle Scholar
- 8.Ustinov VM, Zhukov AE, Egorov AY, Maleev NA (2003) Quantum dot lasers. Oxford University Press, OxfordCrossRefGoogle Scholar
- 9.Rafailov EU, Cataluna MA, Avrutin EA (2011) Ultrafast lasers based on quantum dot structures: physics and devices. Wiley-VCH, WeinheimCrossRefGoogle Scholar
- 10.Stolze J, Suter D (2004) Quantum computing. Wiley-VCH, WeinheimCrossRefGoogle Scholar
- 11.Hoath SD (2016) Fundamentals of inkjet printing. Wiley-VCH, WeinheimCrossRefGoogle Scholar
- 12.Grumezescu AM (2016) Nanobiomaterials in medical imaging. Applications of nanobiomaterials. Elsevier, OxfordGoogle Scholar
- 13.Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New YorkCrossRefGoogle Scholar
- 14.Algar Russ W, Kim H, Medintz IL, Hildebrandt N (2014) Coord Chem Rev 263–264:65–85CrossRefGoogle Scholar
- 15.Wegner DK, Hildebrandt N (2015) Chem Soc Rev 44:4792–4834CrossRefGoogle Scholar
- 16.Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Nat Methods 5:763–775CrossRefGoogle Scholar
- 17.Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Curr Opin Biotech 13:40–46CrossRefGoogle Scholar
- 18.Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker AJ, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV (2004) Nat Biotech 22:93–97CrossRefGoogle Scholar
- 19.Hardman R (2006) Environ Health Perspect 114:165–172CrossRefGoogle Scholar
- 20.Kavarnos GJ (1993) Fundamentals of photoinduced electron transfer. Wiley-VCH, WeinheimGoogle Scholar
- 21.Willard DM, Van Orden A (2003) Nat Materials 2:575–576CrossRefGoogle Scholar
- 22.Medintz IL, Mattoussi H (2009) Phys Chem Chem Phys 165:17–45CrossRefGoogle Scholar
- 23.Algar WR, Tavares AJ, Krull UJ (2010) Anal Chim Acta 673:1–25CrossRefGoogle Scholar
- 24.Bouas-Laurent H, Durr H (2001) Pure Appl Chem 73:639–665CrossRefGoogle Scholar
- 25.Crano JC, Guglielmetti RJ (1999) Organic photochromic and thermochromic compounds: main photochromic families. Springer, BerlinGoogle Scholar
- 26.Crano JC, Guglielmetti RJ (2006) Organic photochromic and thermochromic compounds: physicochemical studies, biological applications, and thermochromism. Springer, BerlinGoogle Scholar
- 27.Durr H, Bouas-Laurent H (1990) Photochromism: molecules and systems. Elsevier, AmsterdamGoogle Scholar
- 28.Klajn R (2014) Chem Soc Rev 43:148–184CrossRefGoogle Scholar
- 29.Medintz IL, Trammell SA, Mattoussi H, Mauro JM (2004) J Am Chem Soc 126:30–31CrossRefGoogle Scholar
- 30.Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM (2003) Nat Mater 2:630–638CrossRefGoogle Scholar
- 31.Medintz IL, Goldman ER, Lassman ME, Mauro JM (2003) Bioconjugate Chem 14:909–918CrossRefGoogle Scholar
- 32.Tomasulo M, Yildiz I, Raymo FM (2006) Aust J Chem 59:175–178CrossRefGoogle Scholar
- 33.Zhu L, Zhu M-Q, Hurst JK, Li ADQ (2005) J Am Chem Soc 127:8968–8970CrossRefGoogle Scholar
- 34.Giordano L, Jovin TM, Irie M, Jares-Erijman EA (2002) J Am Chem Soc 124:7481–7489CrossRefGoogle Scholar
- 35.Erno Z, Yildiz I, Gorodetsky B, Raymo FM, Branda NR (2010) Photochem Photobiol Sci 9:249–253CrossRefGoogle Scholar
- 36.Díaz SA, Menéndez GO, Etchehon MH, Giordano L, Jovin TM, Jares-Erijman EA (2011) ACS Nano 5:2795–2805CrossRefGoogle Scholar
- 37.Diaz SA, Gillanders F, Jares-Erijman EA, Jovin TM (2015) Nat Commun 6 6036:1–11Google Scholar
- 38.Irie M, Fukaminato T, Matsuda K, Kobatake S (2014) Chem Rev 114:12174–12277CrossRefGoogle Scholar
- 39.Raymo FM (2013) Phys Chem Chem Phys 15:14840–14850CrossRefGoogle Scholar
- 40.Huang B, Bates M, Zhuang X (2009) Ann Rev Biochem 78:993–1016CrossRefGoogle Scholar
- 41.Fernández-Suárez M, Ting AY (2008) Nat Rev Mol Cell Biol 9:929–943CrossRefGoogle Scholar
- 42.Heilemann MJ (2010) Biotech. 149:243–251Google Scholar
- 43.Banala S, Maurel D, Manley S, Johnsson K (2012) ACS Chem Biol 7:289–293CrossRefGoogle Scholar
- 44.Zhang Y, Swaminathan S, Tang S, Garcia-Amorós J, Boulina M, Captain B, Baker JD, Raymo FM (2015) J Am Chem Soc 137:4709–4719CrossRefGoogle Scholar
- 45.Zhao Y, Zheng Q, Dakin K, Xu K, Martínez ML, Li WH (2004) J Am Chem Soc 126:4653–4663Google Scholar
- 46.Ellis-Davies GCR (2007) Nat Methods 4:619–628CrossRefGoogle Scholar
- 47.Shao Q, Xing B (2010) Chem Soc Rev 39:2835–2846CrossRefGoogle Scholar
- 48.Yu CYY, Kwok RTK, Mei J, Hong Y, Chen S, Lam JWY, Tang BZ (2014) Chem Commun 50:8134–8136CrossRefGoogle Scholar
- 49.Shaban Ragab S, Swaminathan S, Garcia-Amorós J, Captain B, Raymo FM (2015) New J Chem 39:1570–1573CrossRefGoogle Scholar
- 50.Gang Han TM, Ajo-Franklin C, Cohen BE (2008) J Am Chem Soc 130:15811–15813CrossRefGoogle Scholar
- 51.Miesch C, Emrick T (2014) J Coll Interf Sci 425:152–158CrossRefGoogle Scholar
- 52.Impellizzeri S, McCaughan B, Callan JF, Raymo FM (2012) J Am Chem Soc 134:2276–2283CrossRefGoogle Scholar
- 53.Wink DA, Grisham MB, Mitchell JB, Ford P (1996) Methods Enzymol 268:12–31CrossRefGoogle Scholar
- 54.Davis KL, Martin E, Turko IV, Murad F (2001) Annu Rev Pharmacol Toxicol 41:203–206CrossRefGoogle Scholar
- 55.Murad F (1999) Angew Chem Int Ed 38:1856–1868CrossRefGoogle Scholar
- 56.Furchgott RF (1999) Angew Chem Int Ed 38:1870–1880CrossRefGoogle Scholar
- 57.Ignarro LJ (1999) Angew Chem Int Ed 38:1882–1892CrossRefGoogle Scholar
- 58.Seabra AB, Duran N (2010) J Mater Chem 20:1624–1637CrossRefGoogle Scholar
- 59.Sonveaux P, Jordan BF, Gallez B, Feron O (2009) Eur J Cancer 45:1352–1369CrossRefGoogle Scholar
- 60.Cheng H, Wang L, Mollica M, Re AT, Wu S, Zuo L (2014) Cancer Lett 353:1–7CrossRefGoogle Scholar
- 61.Huerta S (2015) Future Sci OA 1(1):FS044-1–9Google Scholar
- 62.Keefer LK, Nims RW, Davies KM, Wink DA (1996) Methods Enzymol 268:281–293CrossRefGoogle Scholar
- 63.Wang PG, Xian M, Tang X, Wu X, Wen Z, Cai T, Janczuk AJ (2002) Chem Rev 102:1091–1134CrossRefGoogle Scholar
- 64.Schloßbauer A, Sauer AM, Cauda V, Schmidt A, Engelke H, Rothbauer U, Zolghadr K, Leonhardt H, Bräuchle C, Bein T (2012) Adv Healthcare Mater 1:316–320CrossRefGoogle Scholar
- 65.Ford PC (2013) Nitric Oxide 34:56–64CrossRefGoogle Scholar
- 66.Jacques SL (2013) Phys Med Biol 58:R37–R61CrossRefGoogle Scholar
- 67.Neuman D, Ostrowsky AD, Absalonson RO, Strouse GF, Ford PC (2007) J Am Chem Soc 129:4146–4147CrossRefGoogle Scholar
- 68.Neuman D, Ostrowsky AD, Mikhailovsky AA, Absalonson RO, Strouse GF, Ford PC (2008) J Am Chem Soc 130:168–175CrossRefGoogle Scholar
- 69.Burks PT, Ostrowski AD, Mikhailovsky AA, Chan EM, Wagenknecht PS, Ford PC (2012) J Am Chem Soc 134:13266–13275CrossRefGoogle Scholar
- 70.Franco LP, Cicillini AS, Biazzotto JC, Schiavon MA, Mikhailovsky A, Burks P, Garcia J, Ford PC, da Silva RS (2014) J Phys Chem A 118:12184–12191CrossRefGoogle Scholar
- 71.Tan L, Wan A, Zhu X, Li H (2014) Analyst 139:3398–3406CrossRefGoogle Scholar
- 72.Tan L, Wan A, Zhu X, Li H (2014) Chem Commun 50:5725–5728CrossRefGoogle Scholar
- 73.Xu Z, Wu Z, Sun J, Gui RJ (2015) Mat Chem Phys 162:286–290CrossRefGoogle Scholar
- 74.Jin H, Gui R, Sun J, Wang Y (2016) Anal Chim Acta 922:48–54CrossRefGoogle Scholar
- 75.Ratanatawanate C, Chyao A, Balkus KJ Jr (2011) J Am Chem Soc 133:3492–3497CrossRefGoogle Scholar
- 76.Tasker HS, Jones HO (1909) J Chem Soc 95:1910–1918CrossRefGoogle Scholar
- 77.Williams DLH (1996) Chem Commun 1085–1091Google Scholar
- 78.Singh SP, Wishnok JS, Keshive M, Deen WM, Tannenbaum SR (1996) Proc Natl Acad Sci 93:14428–14433CrossRefGoogle Scholar
- 79.Ratanatawanate C, Tao Y, Balkus KJ Jr (2009) J Phys Chem C 113:10755–10760CrossRefGoogle Scholar
- 80.Tan L, Wan A, Li H (2013) ACS Appl Mat Interf 5:11163–11171CrossRefGoogle Scholar
- 81.Tan L, Wan A, Li H (2013) Langmuir 29:15032–15042CrossRefGoogle Scholar
- 82.Callari FL, Sortino S (2008) Chem Commun 1971–1973Google Scholar
- 83.Caruso EB, Petralia S, Conoci S, Giuffrida S, Sortino S (2007) J Am Chem Soc 129:480–481CrossRefGoogle Scholar
- 84.Fowley C, McHale AP, McCaughan B, Fraix A, Sortino S, Callan JF (2015) Chem Commun 51:81–84CrossRefGoogle Scholar