Topics in Current Chemistry

, 374:63 | Cite as

Radiation Grafting for the Functionalization and Development of Smart Polymeric Materials

  • Víctor H. Pino-Ramos
  • Alejandro Ramos-Ballesteros
  • Felipe López-Saucedo
  • Jesús E. López-Barriguete
  • Gustavo H. C. Varca
  • Emilio Bucio
Review
Part of the following topical collections:
  1. Applications of Radiation Chemistry

Abstract

Gamma radiation has been shown particularly useful for the functionalization of surfaces with stimuli-responsive polymers. This method involves the formation of active sites (free radicals) onto the polymeric backbone as a result of the high-energy radiation exposition over the polymeric material. Thus, a microenvironment suitable for the reaction among monomer and/or polymer and the active sites is formed and then leading to propagation to form side-chain grafts. The modification of polymers using high-energy irradiation can be performed by the following methods: direct or simultaneous, pre-irradiation oxidative, and pre-irradiation. The most frequently used ones correspond to the pre-irradiation oxidative method as well as the direct one. Radiation-grafting has many advantages over other conventional methods because it does not require the use of catalyst nor additives to initiate the reaction and usually no changes on the mechanical properties with respect to the pristine polymeric matrix are observed. This chapter is focused on the synthesis of smart polymers and coatings obtained by the use of gamma radiation. In addition, the diverse applications of these materials in the biomedical area are also reported, with focus in drug delivery, sutures, and biosensors.

Keywords

Radiation-grafting Smart polymers Sutures Drug delivery Biosensors Polymer functionalization 

Notes

Acknowledgments

The authors thank M. L. Escamilla, A. A. Ramírez, M. Cruz, and B. Leal from ICN-UNAM for their technical assistance. This work was supported by DGAPA-UNAM Grant IN200714.

References

  1. 1.
    Mulder K, Knot M (2001) A history of systems development and entrenchment. Technol Soc 23:265–286. doi: 10.1016/S0160-791X(01)00013-6 CrossRefGoogle Scholar
  2. 2.
    Odian G (2004) Principles of polymerization, 4th edn. Wiley, New Jersey. ISBN 0-471-27400-3CrossRefGoogle Scholar
  3. 3.
    Bhattacharya A, Misra BN (2004) Grafting: a versatile means to modify polymers: techniques, factors and applications. Prog Polym Sci 29:767–814. doi: 10.1016/j.progpolymsci.2004.05.002 CrossRefGoogle Scholar
  4. 4.
    Bucio E, Burillo G (2009) Radiation-induced grafting of sensitive polymers. J Radioanal Nucl Chem 280:239–243. doi: 10.1007/s10967-009-0505-9 CrossRefGoogle Scholar
  5. 5.
    Chapiro A (1962) Radiation chemistry of polymeric systems. Interscience Publishers, New YorkGoogle Scholar
  6. 6.
    Hadjichristidis N, Pispas S, Pitsikalis M, Iatrou H, Lohse DJ (2002) Encyclopedia of polymer science and technology. Graft Copolymers chapter. Wiley, New York. doi: 10.1002/0471440264.pst150 Google Scholar
  7. 7.
    Stevens M (1999) Polymer chemistry. An Introduction, 3rd edn. Oxford University Press, New York. ISBN 0-19-512444-8Google Scholar
  8. 8.
    Zdyrko B, Luzinov I (2011) Polymer brushes by the ‘‘grafting to’’ method. Macromol Rapid Commun 32:859–869. doi: 10.1002/marc.201100162 CrossRefGoogle Scholar
  9. 9.
    Berger S, Synytska A, Ionov L, Eichhorn KJ, Stamm M (2008) Stimuli-responsive bicomponent polymer Janus particles by “grafting from”/“grafting to” approaches. Macromolecules 41:9669–9676. doi: 10.1021/ma802089h CrossRefGoogle Scholar
  10. 10.
    El-Sayed AH, Ishigaki I, Okamoto J (1981) Radiation grafting of acrylic acid onto fluorine-containing polymers. I. Kinetic study of preirradiation grafting onto poly(tetrafluoroethylene). J Appl Polym Sci 26:3117–3124. doi: 10.1002/pol.1984.170220309 CrossRefGoogle Scholar
  11. 11.
    Fijiki K, Tsubokawa N, Sone Y (1990) Radical grafting from carbon black. Graft copolymerization of vinyl monomers initiated by azo groups introduced onto carbon black surface. Polym J 22:661–670. doi: 10.1295/polymj.22.661 CrossRefGoogle Scholar
  12. 12.
    Kato K, Uchida E, Kang E-T, Uyama Y, Ikada Y (2003) Polymer surface with graft chains. Prog Polym Sci 28:209–259. doi: 10.1016/S0079-6700(02)00032-1 CrossRefGoogle Scholar
  13. 13.
    Chapiro A (1964) Radiation chemistry of polymers, basic mechanisms in the radiation chemistry of aqueous media. Radiat Res Suppl. 4:179–191CrossRefGoogle Scholar
  14. 14.
    Ramírez-Fuentes YS, Bucio E, Burillo G (2007) Radiation-induced grafting of N-isopropylacrylamide and acrylic acid onto polypropylene films by two step method. Nucl Instrum Methods B 265:183–186. doi: 10.1016/j.nimb.2007.08.046 CrossRefGoogle Scholar
  15. 15.
    Hanh TT, Huy HT, Hien NQ (2015) Pre-irradiation grafting of acrylonitrile onto chitin for adsorption of arsenic in water. Radiat Phys Chem 106:235–241. doi: 10.1016/j.radphyschem.2014.08.004 CrossRefGoogle Scholar
  16. 16.
    Tsoulfanidis N (1995) Measurement and detection of radiation, 2nd edn. Taylor & Francis, Missouri. ISBN 1-56032-317-5Google Scholar
  17. 17.
    Leroy C, Rancoita P-G (2009) Principles or radiation interaction in matter and detection, 2nd edn. World Scientific Publishing, Massachusetts. ISBN 9789812818270CrossRefGoogle Scholar
  18. 18.
    Kimura Y, Chen J, Asano M, Maekawa Y, Katakai R, Yoshida M (2007) Nucl Instrum Methods B 263:463–467. doi: 10.1016/j.nimb.2007.07.010 CrossRefGoogle Scholar
  19. 19.
    Mandal DK, Bhunia H, Bajpai PK, Chaudharib CV, Dubeyb KA, Varshney L (2016) Radiation-induced grafting of acrylic acid onto polypropylene film and its biodegradability. Radiat Phys Chem 123:37–45. doi: 10.1016/j.radphyschem.2016.02.011 CrossRefGoogle Scholar
  20. 20.
    Nasef MM, Güven O (2012) Radiation-grafted copolymers for separation and purification purposes: status, challenges and future directions. Prog Polym Sci 37:1597–1656. doi: 10.1016/j.progpolymsci.2012.07.004 CrossRefGoogle Scholar
  21. 21.
    Alvarez-Lorenzo C, Bucio E, Burillo G, Concheiro A (2010) Medical devices modified at the surface by Gamma-ray grafting for drug loading and delivery. Expert Opin Drug Deliv 7:173–185. doi: 10.1517/17425240903483174 CrossRefGoogle Scholar
  22. 22.
    Dennis GR, Garnett JL, Zilic E (2003) Cure grafting—a complementary technique to preirradiation and simultaneous processes? Radiat Phys Chem 67:391–395. doi: 10.1016/S0969-806X(03)00073-2 CrossRefGoogle Scholar
  23. 23.
    Desmet G, Takács E, Wojnárovits L, Borsa J (2011) Cellulose functionalization via high-energy irradiation-initiated grafting of glycidyl methacrylate and cyclodextrin immobilization. Radiat Phys Chem 80:1358–1362. doi: 10.1016/j.radphyschem.2011.07.009 CrossRefGoogle Scholar
  24. 24.
    Magaña H, Palomino K, Cornejo-Bravo JM, Alvarez- Lorenzo C, Concheiro A, Bucio E (2015) Radiation-grafting of acrylamide onto silicone rubber films for diclofenac delivery. Radiat Phys Chem 107:164–170. doi: 10.1016/j.radphyschem.2014.10.011 CrossRefGoogle Scholar
  25. 25.
    Gupta B, Jain R, Anjum N, Singh H (2006) Preirradiation grafting of acrylonitrile onto polypropylene monofilament for biomedical applications: I. Influence of synthesis conditions. Radiat Phys Chem 75:161–167. doi: 10.1016/j.radphyschem.2005.04.003 CrossRefGoogle Scholar
  26. 26.
    Meléndez-Ortiz HI, Varca GHC, Lugão AB, Bucio E (2015) Smart polymers and coatings obtained by ionizing radiation: synthesis and biomedical applications. OJP Chem 5:17–33. doi: 10.4236/ojpchem.2015.53003 Google Scholar
  27. 27.
    Hoffman AS, Stayton PS, Bulmus V, Chen G, Chen J, Cheung C (2000) Really smart bioconjugates of smart polymers and receptor proteins. J Biomed Mater Res 52:577–586. doi: 10.1002/1097-4636(20001215) CrossRefGoogle Scholar
  28. 28.
    Klier J, Scranton AB, Peppas NA (1990) Self-associating networks of poly(methacrylic acid-g-ethylene glycol). Macromolecules 23:4944–4949. doi: 10.1021/ma00225a011 CrossRefGoogle Scholar
  29. 29.
    Osada Y (1987) Conversion of chemical into mechanical energy by synthetic polymers (chemomechanical systems). Adv Polym Sci 82:1–46. doi: 10.1007/BFb0024041 CrossRefGoogle Scholar
  30. 30.
    Richardson MJ (1989) Thermal analysis. In: Allen G, Bevington JC (eds) Comprehensive polymer science and supplements. Pergamon, Amsterdam, pp 867–901. doi: 10.1016/B978-0-08-096701-1.00036-7 CrossRefGoogle Scholar
  31. 31.
    Li Z, Tang M, Dai J, Wang T, Bai R (2016) Effect of multiwalled carbon nanotube-grafted polymer brushes on the mechanical and swelling properties of polyacrylamide composite hydrogels. Polymer 85:67–76. doi: 10.1016/j.polymer.2016.01.025 CrossRefGoogle Scholar
  32. 32.
    Meléndez-Ortiz HI, Bucio E, Isoshima T, Hara M (2010) Surface characterization of binary graft copolymers (PP-g-DMAEMA)-g-NIPAAm and (PP-g-4VP)-g-NIPAAm by using SEM and AFM. Smart Coat Book Ref Am Chem Soc Publ 1050:107–120. doi: 10.1021/bk-2010-1050.ch008 Google Scholar
  33. 33.
    Wu F, Zhang S, Chen Z, Zhang B, Yang W, Liu Z, Yang M (2016) Interfacial relaxation mechanisms in polymer nanocomposites through the rheological study on polymer/grafted nanoparticles. Polymer 90:264–275. doi: 10.1016/j.polymer.2016.03.034 CrossRefGoogle Scholar
  34. 34.
    Percot A, Zhu XX, Lafleur M (2000) A simple FTIR spectroscopic method for the determination of the lower critical solution temperature of N-isopropylacrylamide copolymers and related hydrogels. J Polym Sci Part B: Polym Phys 38:907–915. doi: 10.1002/(SICI)1099-0488(20000401)38:7<907:AID-POLB1>3.0.CO;2-5 CrossRefGoogle Scholar
  35. 35.
    Kwan S, Marić M (2016) Thermoresponsive polymers with tunable cloud point temperatures grafted from chitosan via nitroxide mediated polymerization. Polymer 86:69–82. doi: 10.1016/j.polymer.2016.01.039 CrossRefGoogle Scholar
  36. 36.
    Mutalik S, Suthar NA, Managuli RS, Shetty PK, Avadhani K, Kalthur G, Kulkarni RV, Thomas R (2016) Development and performance evaluation of novel nanoparticles of a grafted copolymer loaded with curcumin. Int J Biol Macromol 86:709–720. doi: 10.1016/j.ijbiomac.2015.11.092 CrossRefGoogle Scholar
  37. 37.
    Wyart Y, Georges G, Deumié C, Amra C, Moulin P (2008) Membrane characterization by optical methods: ellipsometry of the scattered field. J Membr Sci 318:145–153. doi: 10.1016/j.memsci.2008.02.039 CrossRefGoogle Scholar
  38. 38.
    Wu Q, Wu B (1995) Study of membrane morphology by image analysis of electron micrographs. J Membr Sci 105:113–120. doi: 10.1016/0376-7388(95)00055-H CrossRefGoogle Scholar
  39. 39.
    Rieger J (2001) The glass transition temperature Tg of polymers—comparison of the values from differential thermal analysis (DTA, DSC) and dynamic mechanical measurements (torsion pendulum). Polym Test 20:199–204. doi: 10.1016/S0142-9418(00)00023-4 CrossRefGoogle Scholar
  40. 40.
    Gu H, Wang C, Gong S, Mei Y, Li H, Ma W (2016) Investigation on contact angle measurement methods and wettability transition of porous surfaces. Surf Coat Technol 292:72–77. doi: 10.1016/j.surfcoat.2016.03.014 CrossRefGoogle Scholar
  41. 41.
    Letellier P, Mayaffre A, Turmine M (2007) Drop size effect on contact angle explained by nonextensive thermodynamics. Young’s equation revisited. J Colloid Interface Sci 314:604–614. doi: 10.1016/j.jcis.2007.05.085 CrossRefGoogle Scholar
  42. 42.
    Kalia S, Sabaa MW (2013) Polysaccharide based graft copolymers. Springer, Berlin, Heidelberg. doi: 10.1007/978-3-642-36566-9_2 CrossRefGoogle Scholar
  43. 43.
    Ferraz CC, Varca GHC, Ruiz JC, Lopes PS, Mathor MB, Lugão AB, Bucio E (2014) Radiation-grafting of thermo- and pH-responsive poly(N-vinylcaprolactam-co-acrylic acid) onto silicone rubber and polypropylene films for biomedical purposes. Radiat Phys Chem 97:298–303. doi: 10.1016/j.radphyschem.2013.12.027 CrossRefGoogle Scholar
  44. 44.
    Pathania D, Sharma R (2012) Synthesis and characterization of graft copolymers of methacrylic acid onto gelatinized potato starch using chromic acid initiator in presence of air. Adv Mater Lett 3:136–142. doi: 10.5185/amlett.2011.829 CrossRefGoogle Scholar
  45. 45.
    Zhang J, Peppas NA (2000) Synthesis and characterization of pH- and temperature-sensitive poly (methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules 33:102–107. doi: 10.1021/ma991398q CrossRefGoogle Scholar
  46. 46.
    Tsukasa S, Kazutaka K, Takaki S, Tomoo S (1998) UCST and LCST behavior in polymer blends containing poly (methyl methacrylate-stat-styrene). Polymer 39:773–780. doi: 10.1016/S0032-3861(97)00339-X CrossRefGoogle Scholar
  47. 47.
    Bucio E, Burillo G (2007) Radiation grafting of pH and thermosensitive N-isopropylacrylamide and acrylic acid onto PTFE films by two-steps process. Radiat Phys Chem 76:1724–1727. doi: 10.1016/j.radphyschem.2007.02.109 CrossRefGoogle Scholar
  48. 48.
    Hoffman AS (2013) Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev 65:10–16. doi: 10.1016/j.addr.2012.11.004 CrossRefGoogle Scholar
  49. 49.
    Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360. doi: 10.1002/adma.200501612 CrossRefGoogle Scholar
  50. 50.
    Zhou L, Yuan W, Yuan J, Hong X (2008) Preparation of double-responsive SiO2-g-DMAEMA nanoparticles via ATRP. Mater Lett 62:1372–1375. doi: 10.1016/j.matlet.2007.08.057 CrossRefGoogle Scholar
  51. 51.
    Bignotti F, Penco M, Sartore L, Peroni I, Mendichi R, Casolaro M, D’Amore A (2000) Synthesis, characterization and solution behavior of thermo- and pH-responsive polymers bearing l-leucine residues in the side chains. Polymer 41:8247–8256. doi: 10.1016/S0032-3861(00)00177-4 CrossRefGoogle Scholar
  52. 52.
    Burillo G, Bucio E, Arenas E, Lopez GP (2007) Temperature and pH sensitive swelling behavior of binary DMAEMA/4VP grafts on polypropylene films. Macromol Mater Eng 292:214–219. doi: 10.1002/mame.200600394 CrossRefGoogle Scholar
  53. 53.
    Bucio E, Burillo G, Adem E, Coqueret X (2005) Temperature sensitive behavior of poly(N-isopropylacrylamide) grafted onto EB-irradiated polypropylene. Macromol Mater Eng 290:745–752. doi: 10.1002/mame.200500074 CrossRefGoogle Scholar
  54. 54.
    Adem E, Avalos-Borja M, Bucio E, Burillo G, Castellon FF, Cota L (2005) Surface characterization of binary grafting of AAc/NIPAAm onto poly(tetrafluoroethylene) (PTFE). Nucl Instrum Methods B 234:471–476. doi: 10.1016/j.nimb.2005.02.009 CrossRefGoogle Scholar
  55. 55.
    Yan L, Zhu Q, Kenkare PU (2000) Lower critical solution temperature of linear PNIPA obtained from a Yukawa potential of polymer chains. J Appl Polym Sci 78:1971–1976. doi: 10.1002/1097-4628(20001209)78:11<1971:AID-APP170>3.0.CO;2-P CrossRefGoogle Scholar
  56. 56.
    Feil H, Bae YH, Feijen J, Kim SW (1993) Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules 26:2496–2500. doi: 10.1021/ma00062a016 CrossRefGoogle Scholar
  57. 57.
    Heskins M, Guillet JE (1969) Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Chem 2:1441–1455. doi: 10.1007/s00396-012-2694-y CrossRefGoogle Scholar
  58. 58.
    Grinberg VY, Dubovik AS, Kuznetsov DV, Grinberg NV, Grosberg AY, Tanaka T (2000) Studies of the thermal volume transition of poly(N-isopropylacrylamide) hydrogels by high-sensitivity differential scanning microcalorimetry. 2. Thermodynamic functions. Macromolecules 33:8685–8692. doi: 10.1021/ma000527w CrossRefGoogle Scholar
  59. 59.
    Gil ES, Hudson SM (2004) Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci 29:1173–1222. doi: 10.1016/j.progpolymsci.2004.08.003 CrossRefGoogle Scholar
  60. 60.
    Siegel RA (1993) Hydrophobic weak polyelectrolyte gels: studies of swelling equilibria and kinetics. Adv Polym Sci 109:233–267. doi: 10.1007/3-540-56791-7_6 CrossRefGoogle Scholar
  61. 61.
    Tonge SR, Tighe BJ (2001) Responsive hydrophobically associating polymers: a review of structure and properties. Adv Drug Deliv Rev 53:109–122. doi: 10.1016/S0169-409X(01)00223-X CrossRefGoogle Scholar
  62. 62.
    Stubbs M, McSheehy PMJ, Griffiths JR (1999) Causes and consequences of acidic pH in tumors: a magnetic resonance study. Adv Enzyme Regul 39:13–30. doi: 10.1016/S0065-2571(98)00018-1 CrossRefGoogle Scholar
  63. 63.
    Bhattacharya A (2000) Radiation and industrial polymers. Prog Polym Sci 25:371–401. doi: 10.1016/S0079-6700(00)00009-5 CrossRefGoogle Scholar
  64. 64.
    Ward MA, Georgiou TK (2011) Thermoresponsive polymers for biomedical application. Polymers 3:1215–1242. doi: 10.3390/polym3031215 CrossRefGoogle Scholar
  65. 65.
    Yager KG, Barrett CJ (2008) Azobenzene polymers for photonic applications. Wiley, Hoboken. doi: 10.1002/9780470439098.ch1 Google Scholar
  66. 66.
    Andrade A, Ferreira R, Fabris J, Domingues R (2011) Coating nanomagnetic particles for biomedical applications. In: Fazel-Rezai R (ed) Biomedical engineering—frontiers and challenges. InTech, Rijeka. doi: 10.5772/19519 Google Scholar
  67. 67.
    Contreras-García A, Alvarez-Lorenzo C, Taboada C, Concheiro A, Bucio E (2011) Stimuli-responsive networks grafted onto polypropylene for the sustained delivery of NSAIDs. Acta Biomater 7:996–1008. doi: 10.1016/j.actbio.2010.10.001 CrossRefGoogle Scholar
  68. 68.
    Gagliardi M (2012) In vitro haematic proteins adsorption and cytocompatibility study on acrylic copolymer to realize coatings for drug-eluting stents. Mater Sci Eng C 32:2445–2451. doi: 10.1016/j.msec.2012.07.020 CrossRefGoogle Scholar
  69. 69.
    Li X, Li P, Saravanan R, Basu A, Mishra B, Lim SH, Su X, Tambyah PA, Leong SS (2014) Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties. Acta Biomater 10:258–266. doi: 10.1016/j.actbio.2013.09.009 CrossRefGoogle Scholar
  70. 70.
    Costa F, Carvalho IF, Montelaro RC, Gomes P, Martins MCL (2011) Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater 7:1431–1440. doi: 10.1016/j.actbio.2010.11.005 CrossRefGoogle Scholar
  71. 71.
    Kho K, Cheow WS, Lie RH, Hadinoto K (2010) Aqueous re-dispersibility of spray-dried antibiotic-loaded polycaprolactone nanoparticle aggregates for inhaled antibiofilm therapy. Powder Technol 203:432–439. doi: 10.1016/j.powtec.2010.06.003 CrossRefGoogle Scholar
  72. 72.
    Adal KA, Farr BM (1996) Central venous catheter-related infections: a review. Nutrition 12:208–213. doi: 10.1016/S0899-9007(96)91126-0 CrossRefGoogle Scholar
  73. 73.
    Ma Z, Mao Z, Gao C (2007) Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf B 60:137–157. doi: 10.1016/j.colsurfb.2007.06.019 CrossRefGoogle Scholar
  74. 74.
    Takashima K, Shimomura R, Kitou T, Terada H, Yoshinaka K, Ikeuchi K (2007) Contact and friction between catheter and blood vessel. Tribol Int 40:319–328. doi: 10.1016/j.colsurfb.2007.06.019 CrossRefGoogle Scholar
  75. 75.
    Oehr C (2003) Plasma surface modification of polymers for biomedical use. Nucl Instrum Methods B 208:40–47. doi: 10.1016/S0168-583X(03)00650-5 CrossRefGoogle Scholar
  76. 76.
    Bilek MMM (2014) Biofunctionalization of surfaces by energetic ion implantation: review of progress on applications in implantable biomedical devices and antibody microarrays. Appl Surf Sci 310:3–10. doi: 10.1016/j.apsusc.2014.03.097 CrossRefGoogle Scholar
  77. 77.
    Fadeeva E, Truong VK, Stiesch M, Chichkov BN, Crawford RJ, Wang J, Ivanova EP (2011) Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation. Langmuir 27:3012–3019. doi: 10.1021/la104607g CrossRefGoogle Scholar
  78. 78.
    Melendez-Ortiz HI, Díaz-Rodríguez P, Alvarez-Lorenzo C, Concheiro A, Bucio E (2014) Binary graft modification of polypropylene for anti-inflammatory drug-device combo products. J Pharm Sci 103:1269–1277. doi: 10.1021/la104607g CrossRefGoogle Scholar
  79. 79.
    Buddy D (1995) Polymers: chemical, biological and surface analytical challenges. Biosens Bioelectron 10:797–804. doi: 10.1016/0956-5663(95)99218-A CrossRefGoogle Scholar
  80. 80.
    Nowatzki PJ, Koepsel RR, Stoodley P, Min K, Harper A, Murata H, Donfack J, Hortelano ER, Ehrlich GD, Russell AJ (2012) Salicylic acid-releasing polyurethane acrylate polymers as anti-biofilm urological catheter coatings. Acta Biomater 8:1869–1880. doi: 10.1016/j.actbio.2012.01.032 CrossRefGoogle Scholar
  81. 81.
    Aguilar MR, San Román J (2014) Introduction to smart polymers and their applications. Smart Polym Appl. doi: 10.1533/9780857097026.1 (chapter 1) Google Scholar
  82. 82.
    Primo GA, Alvarez-Igarzabal CI, Pino GA, Ferrero JC, Rossa M (2016) Surface morphological modification of crosslinked hydrophilic co-polymers by nanosecond pulsed laser irradiation. Appl Surf Sci 369:422–429. doi: 10.1016/j.apsusc.2016.02.047 CrossRefGoogle Scholar
  83. 83.
    Kingshott P, Wei J, Bagge-Ravn D, Gadegaard N, Gram L (2003) Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion. Langmuir 19:6912. doi: 10.1021/la034032m CrossRefGoogle Scholar
  84. 84.
    Desai NP, Hossainy SFA, Hubell JA (1992) Surface-immobilized polyethylene oxide for bacterial repellence. Biomaterials 13:417–420. doi: 10.1016/0142-9612(92)90160-P CrossRefGoogle Scholar
  85. 85.
    Kohnen W, Jansen B, Ruiten D, Steinhauser H (1994) Novel antiinfective biomaterials by polymer modification. In: Gebelein CG, Carraher CE (eds) Biotechnology and Bioactive Polymers. Springer US, Boston, MA, pp 317–325. doi: 10.1007/978-1-4757-9519-6_31
  86. 86.
    Moore LE, Ledder RG, Gilbert P, McBain AJ (2008) In vitro study of the effect of cationic biocides on bacterial population dynamics and susceptibility. Appl Environ Microbiol. doi: 10.1128/AEM.00573-08 Google Scholar
  87. 87.
    Murata H, Koepsel RR, Matyjaszewski K, Russell AJ (2007) Permanent non-leaching antibacterial surfaces-2: how high density cationics surfaces kill bacterial cells. Biomaterials 28:4870–4879. doi: 10.1016/j.biomaterials.2007.06.012 CrossRefGoogle Scholar
  88. 88.
    Crawford RJ, Webb HK, Truong VK, Hasan J, Ivanova EP (2012) Surface topographical factors influencing bacterial attachment. Adv Colloid Interface Sci 179–182:142–149. doi: 10.1016/j.cis.2012.06.015 CrossRefGoogle Scholar
  89. 89.
    Ma Z, Mao Z, Gao C (2007) Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf B 60:137–157. doi: 10.1016/j.colsurfb.2007.06.019 CrossRefGoogle Scholar
  90. 90.
    Seedat N, Kalhapure RS, Mocktar C, Vepuri S, Jadhav M, Soliman M, Govender T (2016) Co-encapsulation of multi-lipids and polymers enhances the performance of vancomycin in lipid–polymer hybrid nanoparticles: in vitro and in silico studies. Mater Sci Eng C 61:616–630. doi: 10.1016/j.msec.2015.12.053 CrossRefGoogle Scholar
  91. 91.
    Glinel K, Thebault P, Humblot V, Pradier CM, Jouenne T (2012) Antibacterial surfaces developed from bio-inspired approaches. Acta Biomater 8:1670–1684. doi: 10.1016/j.actbio.2012.01.011 CrossRefGoogle Scholar
  92. 92.
    Maki DG, Tambyah PA (2001) Engineering out the risk of infection with urinary catheters. Emerg Infect Dis 7:342–347. doi: 10.3201/eid0702.700342 CrossRefGoogle Scholar
  93. 93.
    Hasan J, Crawford RJ, Ivanova EP (2013) Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol 31:295–304. doi: 10.1016/j.tibtech.2013.01.017 CrossRefGoogle Scholar
  94. 94.
    Patriciu A, Mazilu D, Bagga HS, Petrisor D, Kavoussi L, Stoianovici D (2007) An evaluation method for the mechanical performance of guide-wires and catheters in accessing the upper urinary tract. Med Eng Phys 29:918–922. doi: 10.1016/j.medengphy.2006.09.002 CrossRefGoogle Scholar
  95. 95.
    Tanaka N, Bohnenberger S, Kunkelmann T, Munaro B, Ponti J, Poth A, Sabbioni E, Sakai A, Salovaara S, Sasaki K, Thomas BC, Umeda M (2012) Prevalidation study of the BALB/c 3T3 cell transformation assay for assessment of carcinogenic potential of chemicals. Mutat Res/Genet Toxicol Environ Mutagen 744:20–29. doi: 10.1016/j.mrgentox.2011.12.008 CrossRefGoogle Scholar
  96. 96.
    Saxena S, Ray AR, Kapil A, Pavon-Djavid G, Letourneur D, Gupta B, Meddahi-Pelle A (2011) Development of a new polypropylene-based suture: plasma grafting, surface treatment, characterization, and biocompatibility studies. Macromol Biosci 11:373–382. doi: 10.1002/mabi.201000298 CrossRefGoogle Scholar
  97. 97.
    Pillai CKS, Sharma CP (2010) Review paper: absorbable polymeric surgical sutures: chemistry, production, properties, biodegradability, and performance. J Biomater Appl 25:291–366. doi: 10.1177/0885328210384890 CrossRefGoogle Scholar
  98. 98.
    Viju S, Thilagavathi G (2011) Effect of chitosan coating on the characteristics of silk-braided sutures. J Ind Text 42:256–268. doi: 10.1177/1528083711435713 CrossRefGoogle Scholar
  99. 99.
    Chu CC, von Fraunhofer JA, Greisler HP (1996) Wound closure biomaterials and devices. CRC Press, FloridaGoogle Scholar
  100. 100.
    National Institute for Health and Clinical Excellence (2008) Rozzelle and collection. http://www.ncbi.nlm.nih.gov/books/NBK11822/. Accessed April 2016
  101. 101.
    Li Y, Kumar KN, Dabkowski JM, Corrigan M, Scott RW, Nüsslein K, Tew GN (2012) New bactericidal surgical suture coating. Langmuir 28:12134–12139. doi: 10.1021/la302732w CrossRefGoogle Scholar
  102. 102.
    Gupta B, Jain R, Singh H (2008) Preparation of antimicrobial sutures by preirradiation grafting onto polypropylene monofilament. Polym Adv Technol 19:1698–1703. doi: 10.1002/pat.1146 CrossRefGoogle Scholar
  103. 103.
    García-Vargas M, González-Chomón C, Magariños B, Concheiro A, Alvarez-Lorenzo C, Bucio E (2014) Acrylic polymer-grafted polypropylene sutures for covalent immobilization or reversible adsorption of vancomycin. Int J Pharm 461:286–295. doi: 10.1016/j.ijpharm.2013.11.060 CrossRefGoogle Scholar
  104. 104.
    Jain R, Gupta B, Anjum N, Revagade N, Singh H (2004) Preparation of antimicrobial sutures by preirradiation grafting of acrylonitrile onto polypropylene monofilament. II. mechanical, physical, and thermal characteristics. J Appl Polym Sci 93:1224–1229. doi: 10.1002/app.20543 CrossRefGoogle Scholar
  105. 105.
    Saxena S, Ray AR, Gupta B (2010) Graft polymerization of acrylic acid onto polypropylene monofilament by RF plasma. J Appl Polym Sci 116:2884–2892. doi: 10.1002/app.31823 Google Scholar
  106. 106.
    Gupta B, Jain R, Nishat Anjum N, Singh H (2004) Preparation of antimicrobial sutures by preirradiation grafting of acrylonitrile onto polypropylene monofilament. III. hydrolysis of the grafted suture. J Appl Polym Sci 94:2509–2516. doi: 10.1002/app.21211 CrossRefGoogle Scholar
  107. 107.
    Gupta B, Anjum N, Gulrez SKH, Singh H (2007) Development of antimicrobial polypropylene sutures by graft copolymerization. II. Evaluation of physical properties, drug release, and antimicrobial activity. J Appl Polym Sci 103:3534–3538. doi: 10.1002/app.24360 CrossRefGoogle Scholar
  108. 108.
    Bronzino J, Peterson D (2008) The biomedical engineering handbook. 3rd Edition. CRC Press Taylor & Francis Group, Boca Raton, Florida. ISBN 9781439825334Google Scholar
  109. 109.
    Turner APF, Karube I, Wilson GS (1987) Biosensors: fundamentals and applications. Oxford University Press, Oxford. ISBN 0-19-854724-2. doi: 10.1016/S0003-2670(00)85361-1
  110. 110.
    Ponmozhi J, Torres-Marques CF, Frazão O (2012) Smart sensors/actuators for biomedical applications: review. Measurement 45:1675–1688. doi: 10.1016/j.measurement.2012.02.006 CrossRefGoogle Scholar
  111. 111.
    Razzak M, Darwis D, Zainuddin Sukirno (2001) Irradiation of PVA and PVP blended hydrogel for wound dressing. Radiat Phys Chem 62:107–113. doi: 10.1016/S0969-806X(01)00427-3 CrossRefGoogle Scholar
  112. 112.
    Webb RC, Bonifas AP, Behnaz A, Zhang Y, Yu KJ, Cheng H, Shi M, Bian Z, Liu Z, Kim YS, Yeo WH, Park JS, Song J, Li Y, Huang Y, Gorbach AM, Rogers JA (2013) Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater 12:938–944. doi: 10.1038/nmat3755 CrossRefGoogle Scholar
  113. 113.
    Kobayashi M, Chang Y, Oka M (2005) In vivo study of PVA hydrogel artificial meniscus. Biomaterials 26(16):3243–3248. doi: 10.1016/j.biomaterials.2004.08.028 CrossRefGoogle Scholar
  114. 114.
    Ottenbrite RM, Park K, Okano T (2010) Biomedical applications of hydrogels handbook. Springer, New York. ISBN 978-1-4419-5918-8. doi: 10.1007/978-1-4419-5919-5
  115. 115.
    Carretta N, Tricoli V, Pichionni F (2000) Ionomeric membranes based on partially sulfonated PS: synthesis, proton conduction and methanol permeation. J Membr Sci 166:189–197. doi: 10.1016/S0376-7388(99)00258-6 CrossRefGoogle Scholar
  116. 116.
    Ouyang J, Chu C, Chen F, Xu Q, Yang Y (2005) High conductivity poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) film and its application in polymer optoelectronic devices. Adv Funct Mater 15:203–208. doi: 10.1002/adfm.200400016 CrossRefGoogle Scholar
  117. 117.
    Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10:2341–2353. doi: 10.1016/j.actbio.2014.02.015 CrossRefGoogle Scholar
  118. 118.
    Wang X, Uchiyama S (2013) Polymers for biosensors construction. In: Rinken T (eds) State of the art in biosensors – general aspects. InTech. doi: 10.5772/54428 (chapter 3)
  119. 119.
    Guimard N, Gomez N, Schmidt C (2007) Conduction polymers in biomedical engineering. Prog Polym Sci 32:876–921. doi: 10.1016/j.progpolymsci.2007.05.012 CrossRefGoogle Scholar
  120. 120.
    Ramanavicius A, Ramanaviciene A, Malinauskas A (2006) Electrochemical sensors based on conducting polymer-polypyrrole. Electrochim Acta 51:6025–6037. doi: 10.1016/j.electacta.2005.11.052 CrossRefGoogle Scholar
  121. 121.
    Vernitskaya TV, Efimov ON (1997) Polypirrole: a conducting polymer; its synthesis, properties and applications. Russ Chem Rev 66(5):443–457. doi: 10.1070/RC1997v066n05ABEH000261 CrossRefGoogle Scholar
  122. 122.
    Sun Y, Gou G, Yang B, He M, Tian Y, Cheng J, Liu Y (2012) Simple synthesis of polyaniline microtubes for the application on silver microrods preparation. J Mater Res 27(2):457–462. doi: 10.1557/jmr.2011.408 CrossRefGoogle Scholar
  123. 123.
    Weerakoon K, Shu J, Park M, Chin B (2012) Polyaniline sensors for Early detection of insect infestation. J Solid State Sci Technol 1:100–105. doi: 10.1149/2.014205jss CrossRefGoogle Scholar
  124. 124.
    Loo Y, Yoo J, Cross J, Bucholz T, Lee K, Espe M (2007) Improving the electrical conductivity of polymer acid-doped polyaniline by controlling the template molecular weight. J Mater Chem 17:1268–1275. doi: 10.1039/b618521e CrossRefGoogle Scholar
  125. 125.
    Tsumura A, Koezuka H, Ando T (1986) Macromolecular electronic device: field-effect transistor with a polythiophene thin film. Appl Phys Lett 49:1210. doi: 10.1063/1.97417 CrossRefGoogle Scholar
  126. 126.
    Clark J, Silva C, Friend R, Spano F (2007) Role of intermolecular coupling on the photophysics of disordered organic semiconductors: aggregate emission in regioregular polythiophene. Phys Rev Lett 98:206406. doi: 10.1103/PhysRevLett.98.206406 CrossRefGoogle Scholar
  127. 127.
    Muñoz-Muñoz FD, Bucio E (2013) Surface modification and functionalization of polymer materials by gamma irradiation for biomedical applications. Radiat Synth Mater Compd 10:265-301. ISBN:9781466505223Google Scholar
  128. 128.
    Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20:86–100. doi: 10.1016/j.smim.2007.11.004 CrossRefGoogle Scholar
  129. 129.
    Fukano Y, Usul ML, Underwood RA, Isenhat S, Marshall AJ, Hauch KD, Ratner BD, Olerud JE, Fleckman P (2010) Epidermal and dermal integration into sphere-templated porous poly(2-hydroxyethyl methacrylate) implants in mice. J Biomed Mater Res 94:1172–1186. doi: 10.1002/jbm.a.32798 Google Scholar
  130. 130.
    Marshall AJ, Ratner BD (2005) Quantitative characterization of sphere-templated porous biomaterials. AICHE 51(4):1221–1232. doi: 10.1002/aic.10390 CrossRefGoogle Scholar
  131. 131.
    Kasálková NS, Slepička P, Kolská Z, Hodačová P, Kučková S, Švorčík V (2014) Grafting of bovine serum albumin proteins on plasma-modified polymers for potential application in tissue engineering. Nanoscale Res Lett 9:161. doi: 10.1186/1556-276X-9-161 CrossRefGoogle Scholar
  132. 132.
    Halstenberg V, Panitch A, Rizzi S, Hall H, Hubbell JA (2002) Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: a cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules 3(4):710–723. doi: 10.1021/bm015629o CrossRefGoogle Scholar
  133. 133.
    Akiyama Y, Kikuchi A, Yamato M, Okano T (2004) Ultrathin poly(N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control. Langmuir 20(13):5506–5511. doi: 10.1021/la036139f CrossRefGoogle Scholar
  134. 134.
    Hobzova R, Pradny M, Zhunusbekova NM, Sirc J, Guryca V, Michalek J (2011) Bioactive support for cell cultivation and potential grafting. Part 1: surface modification of 2-hydroxyethyl methacrylate hydrogels for avidin immobilization. E Polymers 11(1):474–490. doi: 10.1515/epoly.2011.11.1.474 CrossRefGoogle Scholar
  135. 135.
    von Recum H, Okano T, Wan Kim S (1998) Growth factor release from thermally reversible tissue culture substrates. J Control Release 55(2–3):121–130. doi: 10.1016/s0168-3659(98)00042-x CrossRefGoogle Scholar
  136. 136.
    Bhat RR, Chaney BN, Rowley J, Liebmann-Vinson A, Genzer J (2005) Tailoring cell adhesion using surface-grafted polymer gradient assemblies. Adv Mater 17(23):2802–2807CrossRefGoogle Scholar
  137. 137.
    Ohya S, Nakayama Y, Matsuda T (2001) Material design for an artificial extracellular matrix: cell entrapment in poly (N-isopropylacrylamide) (PNIPAM)-grafted gelatin hydrogel. J. Artif. Organs 4(4):308–314. doi: 10.1007/BF02480023 CrossRefGoogle Scholar
  138. 138.
    Ross AM, Nandivada H, Ryan AL, Lahann J (2012) Synthetic substrates for long-term stem cell culture. Polymer 53(13):2533–2539. doi: 10.1016/j.polymer.2012.03.064 CrossRefGoogle Scholar
  139. 139.
    Fonseca KB, Bidarra SJ, Oliveira MJ, Granja PL, Barrias CC (2011) Molecularly designed alginate hydrogels susceptible to local proteolysis as three-dimensional cellular microenvironments. Acta Biomater 7:1674–1682. doi: 10.1016/j.actbio.2010.12.029 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Víctor H. Pino-Ramos
    • 1
  • Alejandro Ramos-Ballesteros
    • 1
  • Felipe López-Saucedo
    • 1
  • Jesús E. López-Barriguete
    • 1
  • Gustavo H. C. Varca
    • 2
  • Emilio Bucio
    • 1
  1. 1.Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoMéxicoMexico
  2. 2.Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP)São PauloBrazil

Personalised recommendations