Nickel-Catalyzed Aromatic C–H Functionalization

  • Junichiro Yamaguchi
  • Kei Muto
  • Kenichiro Itami
Part of the following topical collections:
  1. Ni- and Fe-Based Cross-Coupling Reactions


Catalytic C–H functionalization using transition metals has received significant interest from organic chemists because it provides a new strategy to construct carbon–carbon bonds and carbon–heteroatom bonds in highly functionalized, complex molecules without pre-functionalization. Recently, inexpensive catalysts based on transition metals such as copper, iron, cobalt, and nickel have seen more use in the laboratory. This review describes recent progress in nickel-catalyzed aromatic C–H functionalization reactions classified by reaction types and reaction partners. Furthermore, some reaction mechanisms are described and cutting-edge syntheses of natural products and pharmaceuticals using nickel-catalyzed aromatic C–H functionalization are presented.


C–H functionalization C–H activation Nickel Heteroarenes Arenes Catalyst 


  1. 1.
    Tasker SZ, Standley EA, Jamison TF (2014) Nature 509:299–309CrossRefGoogle Scholar
  2. 2.
    Yamaguchi J, Muto K, Itami K (2013) Eur J Org Chem 19–30Google Scholar
  3. 3.
    Cai X-H, Xie B (2015) ARKIVOC 184–211Google Scholar
  4. 4.
    Hyster TK (2015) Catal Lett 145:458–467CrossRefGoogle Scholar
  5. 5.
    Khan MS, Haque A, Al-Suti MK, Raithby PR (2015) J Organomet Chem 793:114–133CrossRefGoogle Scholar
  6. 6.
    Nakao Y (2011) Chem Rec 11:242–251CrossRefGoogle Scholar
  7. 7.
    Castro LCM, Chatani N (2015) Chem Lett 44:410–421CrossRefGoogle Scholar
  8. 8.
    Klelman JP, Dubeck M (1963) J Am Chem Soc 85:1544–1545CrossRefGoogle Scholar
  9. 9.
    Liang L-C, Cheng P-S, Huang Y-L (2006) J Am Chem Soc 128:15562–15563CrossRefGoogle Scholar
  10. 10.
    Canivet J, Yamaguchi J, Ban I, Itami K (2009) Org Lett 11:1733–1736CrossRefGoogle Scholar
  11. 11.
    Hachiya H, Hirano K, Satoh T, Miura M (2009) Org Lett 11:1737–1740CrossRefGoogle Scholar
  12. 12.
    Yamamoto T, Muto K, Komiyama M, Canivet J, Yamaguchi J, Itami K (2011) Chem Eur J 17:10113–10122CrossRefGoogle Scholar
  13. 13.
    Iaroshenko V, Ali I, Mkrtchyan S, Semeniuchenko V, Ostrovskyi D, Langer P (2012) Synlett 23:2603–2608CrossRefGoogle Scholar
  14. 14.
    Muto K, Hatakeyama T, Yamaguchi J, Itami K (2015) Chem Sci 6:6792–6798CrossRefGoogle Scholar
  15. 15.
    Watanabe K, Tanaka T, Kondo S (1994) Jpn Kokai Tokkyo Koho 329647Google Scholar
  16. 16.
    Razavi H, Palaninathan SK, Powers ET, Wiseman RL, Purkey HE, Mohamedmohaideen NN, Deechongkit S, Chiang KP, Dendle MTA, Sacchettini JC, Kelly JW (2003) Angew Chem Int Ed 42:2758–2761CrossRefGoogle Scholar
  17. 17.
    Domînguez XA, de La Fuente G, Gonzal ez AG, Rein M, Timon I (1998) Heterocycles 27:35–38Google Scholar
  18. 18.
    Kobayashi O, Uraguchi D, Yamakawa T (2009) Org Lett 11:2679–2682CrossRefGoogle Scholar
  19. 19.
    Yokota A, Aihara Y, Chatani N (2014) J Org Chem 79:11922–11932CrossRefGoogle Scholar
  20. 20.
    Matsuyama N, Hirano K, Satoh T, Miura M (2009) Org Lett 11:4156–4159CrossRefGoogle Scholar
  21. 21.
    Liu YJ, Liu YH, Yan SY, Shi BF (2015) Chem Commun 51:6388–6391CrossRefGoogle Scholar
  22. 22.
    Yi J, Yang L, Xia C, Li F (2015) J Org Chem 80:6213–6221CrossRefGoogle Scholar
  23. 23.
    Landge VG, Shewale CH, Jaiswal G, Sahoo MK, Midya SP, Balaraman E (2016) Catal Sci Technol 6:1946–1951CrossRefGoogle Scholar
  24. 24.
    Cho H, Iwama Y, Okano K, Tokuyama H (2014) Chem Pharm Bull 62:354–363CrossRefGoogle Scholar
  25. 25.
    Vechorkin O, Proust V, Hu X (2010) Angew Chem Int Ed 49:3061–3064CrossRefGoogle Scholar
  26. 26.
    Yao T, Hirano K, Satoh T, Miura M (2010) Chem Eur J 16:12307–12311CrossRefGoogle Scholar
  27. 27.
    Yao T, Hirano K, Satoh T, Miura M (2012) Angew Chem Int Ed 51:775–779CrossRefGoogle Scholar
  28. 28.
    Liu C, Liu D, Zhang W, Zhou L, Lei A (2013) Org Lett 15:6166–6169CrossRefGoogle Scholar
  29. 29.
    Aihara Y, Chatani N (2013) J Am Chem Soc 135:5308–5311CrossRefGoogle Scholar
  30. 30.
    Aihara Y, Wuelbern J, Chatani N (2015) Bull Chem Soc Jpn 88:438–446CrossRefGoogle Scholar
  31. 31.
    Uemura T, Yamaguchi M, Chatani N (2016) Angew Chem Int Ed 55:3162–3165CrossRefGoogle Scholar
  32. 32.
    Barsu N, Kalsi D, Sundararaju B (2015) Chem Eur J 21:9364–9368CrossRefGoogle Scholar
  33. 33.
    Cong X, Li Y, Wei Y, Zeng X (2014) Org Lett 16:3926–3929CrossRefGoogle Scholar
  34. 34.
    Song W, Lackner S, Ackermann L (2014) Angew Chem Int Ed 53:2477–2480CrossRefGoogle Scholar
  35. 35.
    Ruan Z, Lackner S, Ackermann L (2016) Angew Chem Int Ed 55:3153–3157CrossRefGoogle Scholar
  36. 36.
    Wu X, Zhao Y, Ge H (2015) J Am Chem Soc 137:4924–4927CrossRefGoogle Scholar
  37. 37.
    Hachiya H, Hirano K, Satoh T, Miura M (2010) Angew Chem Int Ed 49:2202–2205CrossRefGoogle Scholar
  38. 38.
    Hachiya H, Hirano K, Satoh T, Miura M (2010) Chem Cat Chem 2:1403–1406Google Scholar
  39. 39.
    Qu G-R, Xin P-Y, Niu H-Y, Wang D-C, Ding R-F, Guo H-M (2011) Chem Commun 47:11140–11142CrossRefGoogle Scholar
  40. 40.
    Tobisu M, Hyodo I, Chatani N (2009) J Am Chem Soc 131:12070–12071CrossRefGoogle Scholar
  41. 41.
    Hyodo I, Tobisu M, Chatani N (2012) Chem Asian J 7:1357–1365CrossRefGoogle Scholar
  42. 42.
    Hyodo I, Tobisu M, Chatani N (2012) Chem Commun 48:308–310CrossRefGoogle Scholar
  43. 43.
    Matsuyama N, Kitahara M, Hirano K, Satoh T, Miura M (2010) Org Lett 12:2358–2361CrossRefGoogle Scholar
  44. 44.
    Liu Y-H, Liu Y-J, Yan S-Y, Shi B-F (2015) Chem Commun 51:11650–11653CrossRefGoogle Scholar
  45. 45.
    Xin P-Y, Niu H-Y, Qu G-R, Ding R-F, Guo H-M (2012) Chem Commun 48:6717–6719CrossRefGoogle Scholar
  46. 46.
    Muto K, Yamaguchi J, Itami K (2012) J Am Chem Soc 134:169–172CrossRefGoogle Scholar
  47. 47.
    Muto K, Yamaguchi J, Lei A, Itami K (2013) J Am Chem Soc 135:16384–16387CrossRefGoogle Scholar
  48. 48.
    Xu H, Muto K, Yamaguchi J, Zhao C, Itami K, Musaev DG (2014) J Am Chem Soc 136:14834–14844CrossRefGoogle Scholar
  49. 49.
    Meng L, Kamada Y, Muto K, Yamaguchi J, Itami K (2013) Angew Chem Int Ed 52:10048–10051CrossRefGoogle Scholar
  50. 50.
    Nett M, Erol Ö, Kehraus S, Köck M, Krick A, Eguereva E, Neu E, König GM (2006) Angew Chem Int Ed 45:3863–3867CrossRefGoogle Scholar
  51. 51.
    Linder JR, Moody CJ (2007) Chem Commun 1508–1509Google Scholar
  52. 52.
    Linder JR, Blake AJ, Moody CJ (2008) Org Biomol Chem 6:3908–3916CrossRefGoogle Scholar
  53. 53.
    Zhang J, Ciufolini MA (2009) Org Lett 11:2389–2392CrossRefGoogle Scholar
  54. 54.
    Wang J, Ferguson DM, Kalyani D (2013) Tetrahedron 69:5780–5790CrossRefGoogle Scholar
  55. 55.
    Xiao J, Chen T, Han L-B (2015) Org Lett 17:812–815CrossRefGoogle Scholar
  56. 56.
    Amaike K, Muto K, Yamaguchi J, Itami K (2012) J Am Chem Soc 134:13573–13576CrossRefGoogle Scholar
  57. 57.
    Kruckenberg A, Wadepohl H, Gade LH (2013) Organometallics 32:5153–5170CrossRefGoogle Scholar
  58. 58.
    YamamotoT, Ishizu J, Kohara T, Komiya S, Yamamoto A (1980) J Am Chem Soc 102:3758–3764Google Scholar
  59. 59.
    Hong X, Liang Y, Houk KN (2014) J Am Chem Soc 136:2017–2025CrossRefGoogle Scholar
  60. 60.
    Lu Q, Yu H, Fu Y (2014) J Am Chem Soc 136:8252–8260CrossRefGoogle Scholar
  61. 61.
    Nagatsu A, Kajitani H, Sakakibara J (1995) Tetrahderon Lett 36:4097–4100CrossRefGoogle Scholar
  62. 62.
    Wipf P, Venkatraman S (1996) J Org Chem 61:6517–6522CrossRefGoogle Scholar
  63. 63.
    Amaike K, Itami K, Yamaguchi J (2016) Chem Eur J 22:4384–4388CrossRefGoogle Scholar
  64. 64.
    Nicolaou KC, Zou B, Dethe DH, Li DB, Chen DY-K (2006) Angew Chem Int Ed 45:7786–7792CrossRefGoogle Scholar
  65. 65.
    Nicolaou KC, Dethe DH, Leung GY, Zou B, Chen DY-K (2008) Chem Asian J 3:413–429CrossRefGoogle Scholar
  66. 66.
    Yang K, Wang P, Zhang C, Kadi AA, Fun H-K, Zhang Y, Lu H (2014) Eur J Org Chem 7586–7589Google Scholar
  67. 67.
    Yang K, Zhang C, Wang P, Zhang Y, Ge H (2014) Chem Eur J 20:7241–7244CrossRefGoogle Scholar
  68. 68.
    Zhang H, Hagihara S, Itami K (2015) Chem Lett 44:779–781CrossRefGoogle Scholar
  69. 69.
    Furukawa T, Tobisu M, Chatani N (2015) Chem Commun 51:6508–6511CrossRefGoogle Scholar
  70. 70.
    Yang K, Wang Y, Chen X, Kadi AA, Fun H-K, Sun H, Zhang Y, Lu H (2015) Chem Commun 51:3582–3585CrossRefGoogle Scholar
  71. 71.
    Yan S-Y, Liu Y-J, Liu B, Liu Y-H, Shi B-F (2015) Chem Commun 51:4069–4072CrossRefGoogle Scholar
  72. 72.
    Reddy VP, Qiu R, Iwasaki T, Kambe N (2015) Org Biomol Chem 13:6803–6813CrossRefGoogle Scholar
  73. 73.
    Nakao Y, Kanyiva KS, Oda S, Hiyama T (2006) J Am Chem Soc 128:8146–8147CrossRefGoogle Scholar
  74. 74.
    Mukai T, Hirano K, Satoh T, Miura M (2009) J Org Chem 74:6410–6413CrossRefGoogle Scholar
  75. 75.
    Kanyiva KS, Nakao Y, Hiyama T (2007) Heterocycles 72:677–680CrossRefGoogle Scholar
  76. 76.
    Kanyiva KS, Löbermann F, Nakao Y, Hiyama T (2009) Tetrahedron Lett 50:3463–3466CrossRefGoogle Scholar
  77. 77.
    Kanyiva KS, Nakao Y, Hiyama T (2007) Angew Chem Int Ed 46:8872–8874CrossRefGoogle Scholar
  78. 78.
    Nakao Y, Kanyiva KS, Hiyama T (2008) J Am Chem Soc 130:2448–2449CrossRefGoogle Scholar
  79. 79.
    Nakao Y, Idei H, Kanyiva KS, Hiyama T (2009) J Am Chem Soc 131:15996–15997CrossRefGoogle Scholar
  80. 80.
    Tsai CC, Shih WC, Fang CH, Li CY, Ong TG, Yap GPA (2010) J Am Chem Soc 132:11887–11889CrossRefGoogle Scholar
  81. 81.
    Nakao Y, Kashihara N, Kanyiva KS, Hiyama T (2008) J Am Chem Soc 130:16170–16171CrossRefGoogle Scholar
  82. 82.
    Nett AJ, Zhao W, Zimmerman PM, Montgomery J (2015) J Am Chem Soc 137:7636–7639CrossRefGoogle Scholar
  83. 83.
    Nakao Y, Kashihara N, Kanyiva KS, Hiyama T (2010) Angew Chem Int Ed 49:4451–4454CrossRefGoogle Scholar
  84. 84.
    Shih WC, Chen WC, Lai YC, Yu MS, Ho JJ, Yap GPA, Ong TG (2012) Org Lett 14:2046–2049CrossRefGoogle Scholar
  85. 85.
    Lee WC, Shih WC, Wang TH, Liu Y, Yap GPA, Ong TG (2015) Tetrahedron 71:4460–4464CrossRefGoogle Scholar
  86. 86.
    Schramm Y, Takeuchi M, Semba K, Nakao Y, Hartwig JF (2015) J Am Chem Soc 137:12215–12218CrossRefGoogle Scholar
  87. 87.
    Nakao Y, Yamada Y, Kashihara N, Hiyama T (2010) J Am Chem Soc 132:13666–13668CrossRefGoogle Scholar
  88. 88.
    Bair JS, Schramm Y, Sergeev AG, Clot E, Eisenstein O, Hartwig JF (2014) J Am Chem Soc 136:13098–13101CrossRefGoogle Scholar
  89. 89.
    Shiota H, Ano Y, Aihara Y, Fukumoto Y, Chatani N (2011) J Am Chem Soc 133:14952–14955CrossRefGoogle Scholar
  90. 90.
    Song W, Ackermann L (2013) Chem Commun 49:6638–6640CrossRefGoogle Scholar
  91. 91.
    Fernández-Salas JA, Marelli E, Nolan SP (2015) Chem Sci 6:4973–4977CrossRefGoogle Scholar
  92. 92.
    Aihara Y, Chatani N (2014) J Am Chem Soc 136:898–901CrossRefGoogle Scholar
  93. 93.
    Li M, Dong J, Huang X, Li K, Wu Q, Song F, You J (2014) Chem Commun 50:3944–3946CrossRefGoogle Scholar
  94. 94.
    Iyanaga M, Aihara Y, Chatani N (2014) J Org Chem 79:11933–11939CrossRefGoogle Scholar
  95. 95.
    Wang X, Zhu L, Chen S, Xu X, Au C-T, Qiu R (2015) Org Lett 17:5228–5231CrossRefGoogle Scholar
  96. 96.
    Liu Y-J, Zhang Z-Z, Yan S-Y, Liu Y-H, Shi B-F (2015) Chem Commun 51:7899–7902CrossRefGoogle Scholar
  97. 97.
    Wu X, Zhao Y, Ge H (2014) J Am Chem Soc 136:1789–1792CrossRefGoogle Scholar
  98. 98.
    Li K, Wu Q, Lan J, You J (2015) Nat Commun 6:8404CrossRefGoogle Scholar
  99. 99.
    Liu D, Liu C, Li H, Lei A (2013) Angew Chem Int Ed 52:4453–4456CrossRefGoogle Scholar
  100. 100.
    Gartia Y, Ramidi P, Jones DE, Pulla S, Ghosh A (2014) Catal Lett 144:507–515CrossRefGoogle Scholar
  101. 101.
    Cao W, Liu X, Peng R, He P, Lin L, Feng X (2013) Chem Commun 49:3470–3472CrossRefGoogle Scholar
  102. 102.
    Wu X, Zhao Y, Ge H (2015) J Am Chem Soc 137:4924–4927CrossRefGoogle Scholar
  103. 103.
    Yan S-Y, Liu Y-J, Bin L, Liu Y-H, Zhang Z-Z, Shi B-F (2015) Chem Commun 51:7341–7344CrossRefGoogle Scholar
  104. 104.
    Lin C, Yu W, Yao J, Wang B, Liu Z, Zhang Y (2015) Org Lett 17:1340–1343CrossRefGoogle Scholar
  105. 105.
    Wang X, Qiu R, Yan C, Reddy VP, Zhu L, Xu X, Yin S-F (2015) Org Lett 17:1970–1973CrossRefGoogle Scholar
  106. 106.
    Ye X, Petersen JL, Shi X (2015) Chem Commun 51:7863–7866CrossRefGoogle Scholar
  107. 107.
    Wu X, Zhao Y, Ge H (2014) Chem Eur J 20:9530–9533CrossRefGoogle Scholar
  108. 108.
    Nakao Y, Idei H, Kanyiva KS, Hiyama T (2009) J Am Chem Soc 131:5070–5071CrossRefGoogle Scholar
  109. 109.
    Li M, Yang Y, Zhou D, Wan D, You J (2015) Org Lett 17:2546–2549CrossRefGoogle Scholar
  110. 110.
    Maity S, Agasti S, Earsad AM, Hazra A, Maiti D (2015) Chem Eur J 21:11320–11324CrossRefGoogle Scholar
  111. 111.
    Miyazaki Y, Yamada Y, Nakao Y, Hiyama T (2012) Chem Lett 41:298–300CrossRefGoogle Scholar
  112. 112.
    Nakao Y, Morita E, Idei H, Hiyama T (2011) J Am Chem Soc 133:3264–3267CrossRefGoogle Scholar
  113. 113.
    Ruan Z, Lackner S, Ackermann L (2016) ACS Catal 6:4690–4693CrossRefGoogle Scholar
  114. 114.
    Zheng X-X, Du C, Zhao X-M, Zhu X, Suo J-F, Hao X-Q, Niu J-L, Song M-P (2016) J Org Chem 81:4002–4011CrossRefGoogle Scholar
  115. 115.
    Zhan B-B, Liu Y-H, Hu F, Shi B-F (2016) Chem Commun 52:4934–4937CrossRefGoogle Scholar
  116. 116.
    Aihara Y, Chatani N (2016) ACS Catal 6:4323–4329CrossRefGoogle Scholar
  117. 117.
    Yan Q, Chen Z, Yu W, Yin H, Liu Z, Zhang Y (2015) Org Lett 17:2482–2485CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Applied ChemistryWaseda UniversityTokyoJapan
  2. 2.Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of ScienceNagoya UniversityNagoyaJapan
  3. 3.JST-ERATO, Itami Molecular Nanocarbon ProjectNagoya UniversityNagoyaJapan

Personalised recommendations