Topics in Current Chemistry

, 374:3 | Cite as

Inverse Electron-Demand Diels–Alder Bioorthogonal Reactions

Review
Part of the following topical collections:
  1. Cycloadditions in Bioorthogonal Chemistry

Abstract

Bioorthogonal reactions have been widely used over the last 10 years for imaging, detection, diagnostics, drug delivery, and biomaterials. Tetrazine reactions are a recently developed class of inverse electron-demand Diels–Alder reactions used in bioorthogonal applications. Given their rapid tunable reaction rate and highly fluorogenic properties, tetrazine bioorthogonal reactions have come to be considered highly attractive tools for elucidating biological functions and messages in vitro and in vivo. In this chapter, we present recent advances expanding the scope of precursor reactivity and we introduce new biomedical methodology based on bioorthogonal tetrazine chemistry. We specifically highlight novel applications for different kinds of biomolecules, including nucleic acid, protein, antibodies, lipids, glycans, and bioactive small molecules, in the areas of imaging, detection, and diagnostics. We also briefly present other recently developed inverse electron-demand Diels–Alder bioorthogonal reactions. Lastly, we consider future directions and potential roles that inverse electron-demand Diels–Alder reactions may play in the fields of bioorthogonal and biomedical chemistry.

Keywords

Diels–Alder Tetrazine Bioorthogonal Imaging Detection 

Notes

Acknowledgments

The authors gratefully acknowledge S. Alexander and C.Y. Zhou for their many helpful discussions and suggestions. We thank the University of California, San Diego, for financial support.

References

  1. 1.
    Prescher JA, Bertozzi CR (2005) Nat Chem Biol 1:13–21CrossRefGoogle Scholar
  2. 2.
    Sletten EM, Bertozzi CR (2009) Angew Chem Int Ed 48:6974–6998CrossRefGoogle Scholar
  3. 3.
    Boyce M, Bertozzi CR (2011) Nat Methods 8:638–642CrossRefGoogle Scholar
  4. 4.
    Sletten EM, Bertozzi CR (2011) Acc Chem Res 44:666–676CrossRefGoogle Scholar
  5. 5.
    Agard NJ, Baskin JM, Prescher JA, Lo A, Bertozzi CR (2006) ACS Chem Biol 1:644–648CrossRefGoogle Scholar
  6. 6.
    Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR (2007) Proc Natl Acad Sci 104:16793–16797CrossRefGoogle Scholar
  7. 7.
    Codelli JA, Baskin JM, Agard NJ, Bertozzi CR (2008) J Am Chem Soc 130:11486–11493CrossRefGoogle Scholar
  8. 8.
    Jewett JC, Bertozzi CR (2010) Chem Soc Rev 39:1272–1279CrossRefGoogle Scholar
  9. 9.
    Jewett JC, Sletten EM, Bertozzi CR (2010) J Am Chem Soc 132:3688–3690CrossRefGoogle Scholar
  10. 10.
    Saxon E, Armstrong JI, Bertozzi CR (2000) Org Lett 2:2141–2143CrossRefGoogle Scholar
  11. 11.
    Saxon E, Bertozzi CR (2000) Science 287:2007–2010CrossRefGoogle Scholar
  12. 12.
    Dommerholt J, Schmidt S, Temming R, Hendriks LJA, Rutjes FPJT, van Hest JCM, Lefeber DJ, Friedl P, van Delft FL (2010) Angew Chem Int Ed 49:9422–9425CrossRefGoogle Scholar
  13. 13.
    Ning X, Temming RP, Dommerholt J, Guo J, Ania DB, Debets MF, Wolfert MA, Boons G-J, van Delft FL (2010) Angew Chem Int Ed 49:3065–3068CrossRefGoogle Scholar
  14. 14.
    Sanders BC, Friscourt F, Ledin PA, Mbua NE, Arumugam S, Guo J, Boltje TJ, Popik VV, Boons G-J (2011) J Am Chem Soc 133:949–957CrossRefGoogle Scholar
  15. 15.
    McGrath NA, Raines RT (2012) Chem Sci 3:3237–3240CrossRefGoogle Scholar
  16. 16.
    Lim RKV, Lin Q (2011) Acc Chem Res 44:828–839CrossRefGoogle Scholar
  17. 17.
    Yu Z, Pan Y, Wang Z, Wang J, Lin Q (2012) Angew Chem Int Ed 51:10600–10604CrossRefGoogle Scholar
  18. 18.
    Ramil CP, Lin Q (2013) Chem Commun 49:11007–11022CrossRefGoogle Scholar
  19. 19.
    Yu Z, Ohulchanskyy TY, An P, Prasad PN, Lin Q (2013) J Am Chem Soc 135:16766–16769CrossRefGoogle Scholar
  20. 20.
    Blackman ML, Royzen M, Fox JM (2008) J Am Chem Soc 130:13518–13519CrossRefGoogle Scholar
  21. 21.
    Devaraj NK, Weissleder R, Hilderbrand SA (2008) Bioconj Chem 19:2297–2299CrossRefGoogle Scholar
  22. 22.
    Devaraj NK, Weissleder R (2011) Acc Chem Res 44:816–827CrossRefGoogle Scholar
  23. 23.
    Šečkutė J, Devaraj NK (2013) Curr Opin Chem Biol 17:761–767CrossRefGoogle Scholar
  24. 24.
    Debets MF, van Hest JCM, Rutjes FPJT (2013) Org Biomol Chem 11:6439–6455CrossRefGoogle Scholar
  25. 25.
    Jing C, Cornish VW (2011) Acc Chem Res 44:784–792CrossRefGoogle Scholar
  26. 26.
    Borrmann A, van Hest JCM (2014) Chem Sci 5:2123–2134CrossRefGoogle Scholar
  27. 27.
    Saracoglu N (2007) Tetrahedron 63:4199–4236CrossRefGoogle Scholar
  28. 28.
    Clavier G, Audebert P (2010) Chem Rev 110:3299–3314CrossRefGoogle Scholar
  29. 29.
    Selvaraj R, Fox JM (2013) Curr Opin Chem Biol 17:753–760CrossRefGoogle Scholar
  30. 30.
    Knall A-C, Slugovc C (2013) Chem Soc Rev 42:5131–5142CrossRefGoogle Scholar
  31. 31.
    Hofmann KA, Ehrhart O (1912) Ber Dtsch Chem Ges 45:2731–2740CrossRefGoogle Scholar
  32. 32.
    Curtius T, Hess A (1930) Journal für Praktische Chemie 125:40–53CrossRefGoogle Scholar
  33. 33.
    Karver MR, Weissleder R, Hilderbrand SA (2011) Bioconj Chem 22:2263–2270CrossRefGoogle Scholar
  34. 34.
    Yang J, Karver MR, Li W, Sahu S, Devaraj NK (2012) Angew Chem Int Ed Engl 51:5222–5225CrossRefGoogle Scholar
  35. 35.
    Liu H, Wei Y (2013) Tetrahedron Lett 54:4645–4648CrossRefGoogle Scholar
  36. 36.
    Wang D, Chen W, Zheng Y, Dai C, Wang L, Wang B (2013) Heterocycl Commun 19:171Google Scholar
  37. 37.
    Wu H, Yang J, Seckute J, Devaraj NK (2014) Angew Chem 53:5805–5809CrossRefGoogle Scholar
  38. 38.
    Carlson JC, Meimetis LG, Hilderbrand SA, Weissleder R (2013) Angew Chem Int Ed 52:6917–6920CrossRefGoogle Scholar
  39. 39.
    Meimetis LG, Carlson JCT, Giedt RJ, Kohler RH, Weissleder R (2014) Angew Chem Int Ed 53:7531–7534CrossRefGoogle Scholar
  40. 40.
    Denk C, Svatunek D, Filip T, Wanek T, Lumpi D, Fröhlich J, Kuntner C, Mikula H (2014) Angew Chem Int Ed 53:9655–9659CrossRefGoogle Scholar
  41. 41.
    Ehret F, Wu H, Alexander SC, Devaraj NK (2015) J Am Chem Soc 137:8876–8879CrossRefGoogle Scholar
  42. 42.
    Agarwal P, Beahm BJ, Shieh P, Bertozzi CR (2015) Angew Chem Int Ed 54:11504–11510CrossRefGoogle Scholar
  43. 43.
    Wu H, Cisneros BT, Cole CM, Devaraj NK (2014) J Am Chem Soc 136:17942–17945CrossRefGoogle Scholar
  44. 44.
    Wieczorek A, Buckup T, Wombacher R (2014) Org Biomol Chem 12:4177–4185CrossRefGoogle Scholar
  45. 45.
    Royzen M, Yap GPA, Fox JM (2008) J Am Chem Soc 130:3760–3761CrossRefGoogle Scholar
  46. 46.
    Taylor MT, Blackman ML, Dmitrenko O, Fox JM (2011) J Am Chem Soc 133:9646–9649CrossRefGoogle Scholar
  47. 47.
    Darko A, Wallace S, Dmitrenko O, Machovina MM, Mehl RA, Chin JW, Fox JM (2014) Chem Sci 5:3770–3776CrossRefGoogle Scholar
  48. 48.
    Rossin R, van den Bosch SM, ten Hoeve W, Carvelli M, Versteegen RM, Lub J, Robillard MS (2013) Bioconj Chem 24:1210–1217CrossRefGoogle Scholar
  49. 49.
    Murrey HE, Judkins JC, Am Ende CW, Ballard TE, Fang Y, Riccardi K, Di L, Guilmette ER, Schwartz JW, Fox JM, Johnson DS (2015) J Am Chem Soc 137:11461–11475CrossRefGoogle Scholar
  50. 50.
    Chen W, Wang D, Dai C, Hamelberg D, Wang B (2012) Chem Commun 48:1736–1738CrossRefGoogle Scholar
  51. 51.
    Yang J, Seckute J, Cole CM, Devaraj NK (2012) Angew Chem Int Ed Engl 51:7476–7479CrossRefGoogle Scholar
  52. 52.
    Yang J, Liang Y, Šečkutė J, Houk KN, Devaraj NK (2014) Chem A Eur J 20:3365–3375CrossRefGoogle Scholar
  53. 53.
    Patterson DM, Nazarova LA, Xie B, Kamber DN, Prescher JA (2012) J Am Chem Soc 134:18638–18643CrossRefGoogle Scholar
  54. 54.
    Kamber DN, Nazarova LA, Liang Y, Lopez SA, Patterson DM, Shih H-W, Houk KN, Prescher JA (2013) J Am Chem Soc 135:13680–13683CrossRefGoogle Scholar
  55. 55.
    Rieder U, Luedtke NW (2014) Angew Chem Int Ed 53:9168–9172CrossRefGoogle Scholar
  56. 56.
    Niederwieser A, Späte A-K, Nguyen LD, Jüngst C, Reutter W, Wittmann V (2013) Angew Chem Int Ed 52:4265–4268CrossRefGoogle Scholar
  57. 57.
    Engelsma SB, Willems LI, van Paaschen CE, van Kasteren SI, van der Marel GA, Overkleeft HS, Filippov DV (2014) Org Lett 16:2744–2747CrossRefGoogle Scholar
  58. 58.
    Alley SC, Okeley NM, Senter PD (2010) Curr Opin Chem Biol 14:529–537CrossRefGoogle Scholar
  59. 59.
    Li J, Jia S, Chen PR (2014) Nat Chem Biol 10:1003–1005CrossRefGoogle Scholar
  60. 60.
    Michaelis J, Roloff A, Seitz O (2014) Org Biomol Chem 12:2821–2833CrossRefGoogle Scholar
  61. 61.
    Versteegen RM, Rossin R, ten Hoeve W, Janssen HM, Robillard MS (2013) Angew Chem Int Ed 52:14112–14116CrossRefGoogle Scholar
  62. 62.
    Li Q, Dong T, Liu X, Lei X (2013) J Am Chem Soc 135:4996–4999CrossRefGoogle Scholar
  63. 63.
    Zhang X, Dong T, Li Q, Liu X, Li L, Chen S, Lei X (2015) ACS Chem Biol 10:1676–1683CrossRefGoogle Scholar
  64. 64.
    Kamber DN, Liang Y, Blizzard RJ, Liu F, Mehl RA, Houk KN, Prescher JA (2015) J Am Chem Soc 137:8388–8391CrossRefGoogle Scholar
  65. 65.
    Keliher EJ, Reiner T, Turetsky A, Hilderbrand SA, Weissleder R (2011) ChemMedChem 6:424–427CrossRefGoogle Scholar
  66. 66.
    Devaraj NK, Thurber GM, Keliher EJ, Marinelli B, Weissleder R (2012) Proc Natl Acad Sci USA 109:4762–4767CrossRefGoogle Scholar
  67. 67.
    Uttamapinant C, Howe JD, Lang K, Beránek V, Davis L, Mahesh M, Barry NP, Chin JW (2015) J Am Chem Soc 137:4602–4605CrossRefGoogle Scholar
  68. 68.
    Li Z, Wang D, Li L, Pan S, Na Z, Tan CYJ, Yao SQ (2014) J Am Chem Soc 136:9990–9998CrossRefGoogle Scholar
  69. 69.
    Schoch J, Wiessler M, Jäschke A (2010) J Am Chem Soc 132:8846–8847CrossRefGoogle Scholar
  70. 70.
    Schoch J, Staudt M, Samanta A, Wiessler M, Jäschke A (2012) Bioconj Chem 23:1382–1386CrossRefGoogle Scholar
  71. 71.
    Schoch J, Ameta S, Jaschke A (2011) Chem Commun 47:12536–12537CrossRefGoogle Scholar
  72. 72.
    Asare-Okai PN, Agustin E, Fabris D, Royzen M (2014) Chem Commun 50:7844–7847CrossRefGoogle Scholar
  73. 73.
    Pyka AM, Domnick C, Braun F, Kath-Schorr S (2014) Bioconj Chem 25:1438–1443CrossRefGoogle Scholar
  74. 74.
    Kumar R, El-Sagheer A, Tumpane J, Lincoln P, Wilhelmsson LM, Brown T (2007) J Am Chem Soc 129:6859–6864CrossRefGoogle Scholar
  75. 75.
    Chen XH, Roloff A, Seitz O (2012) Angew Chem 51:4479–4483CrossRefGoogle Scholar
  76. 76.
    Sando S, Kool ET (2002) J Am Chem Soc 124:9686–9687CrossRefGoogle Scholar
  77. 77.
    Franzini RM, Kool ET (2009) J Am Chem Soc 131:16021–16023CrossRefGoogle Scholar
  78. 78.
    Seckute J, Yang J, Devaraj NK (2013) Nucleic Acids Res 41:e148CrossRefGoogle Scholar
  79. 79.
    Cai J, Li X, Yue X, Taylor JS (2004) J Am Chem Soc 126:16324CrossRefGoogle Scholar
  80. 80.
    Gorska K, Keklikoglou I, Tschulena U, Winssinger N (2011) Chem Sci 2:1969CrossRefGoogle Scholar
  81. 81.
    Gorska K, Winssinger N (2013) Angew Chem 52:6820–6843CrossRefGoogle Scholar
  82. 82.
    Furukawa K, Abe H, Tamura Y, Yoshimoto R, Yoshida M, Tsuneda S, Ito Y (2011) Angew Chem 50:12020–12023CrossRefGoogle Scholar
  83. 83.
    Shibata A, Uzawa T, Nakashima Y, Ito M, Nakano Y, Shuto S, Ito Y, Abe H (2013) J Am Chem Soc 135:14172–14178CrossRefGoogle Scholar
  84. 84.
    Lang K, Chin JW (2014) Chem Rev 114:4764–4806CrossRefGoogle Scholar
  85. 85.
    Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Science 263:802–805CrossRefGoogle Scholar
  86. 86.
    Heim R, Prasher DC, Tsien RY (1994) Proc Natl Acad Sci 91:12501–12504CrossRefGoogle Scholar
  87. 87.
    Shaner NC, Steinbach PA, Tsien RY (2005) Nat Methods 2:905–909CrossRefGoogle Scholar
  88. 88.
    Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K (2003) Nat Biotechnol 21:86–89CrossRefGoogle Scholar
  89. 89.
    Fernandez-Suarez M, Baruah H, Martinez-Hernandez L, Xie KT, Baskin JM, Bertozzi CR, Ting AY (2007) Nat Biotechnol 25:1483–1487CrossRefGoogle Scholar
  90. 90.
    George N, Pick H, Vogel H, Johnsson N, Johnsson K (2004) J Am Chem Soc 126:8896–8897CrossRefGoogle Scholar
  91. 91.
    Griffin BA, Adams SR, Tsien RY (1998) Science 281:269–272CrossRefGoogle Scholar
  92. 92.
    Halo TL, Appelbaum J, Hobert EM, Balkin DM, Schepartz A (2009) J Am Chem Soc 131:438–439CrossRefGoogle Scholar
  93. 93.
    Noren CJ, Anthony-Cahill SJ, Griffith MC, Schultz PG (1989) Science 244:182–188CrossRefGoogle Scholar
  94. 94.
    Neumann H, Wang K, Davis L, Garcia-Alai M, Chin JW (2010) Nature 464:441–444CrossRefGoogle Scholar
  95. 95.
    Greiss S, Chin JW (2011) J Am Chem Soc 133:14196–14199CrossRefGoogle Scholar
  96. 96.
    Seitchik JL, Peeler JC, Taylor MT, Blackman ML, Rhoads TW, Cooley RB, Refakis C, Fox JM, Mehl RA (2012) J Am Chem Soc 134:2898–2901CrossRefGoogle Scholar
  97. 97.
    Lang K, Davis L, Torres-Kolbus J, Chou C, Deiters A, Chin JW (2012) Nat Chem 4:298–304CrossRefGoogle Scholar
  98. 98.
    Lang K, Davis L, Wallace S, Mahesh M, Cox DJ, Blackman ML, Fox JM, Chin JW (2012) J Am Chem Soc 134:10317–10320CrossRefGoogle Scholar
  99. 99.
    Plass T, Milles S, Koehler C, Szymański J, Mueller R, Wießler M, Schultz C, Lemke EA (2012) Angew Chem Int Ed 51:4166–4170CrossRefGoogle Scholar
  100. 100.
    Kurra Y, Odoi KA, Lee Y-J, Yang Y, Lu T, Wheeler SE, Torres-Kolbus J, Deiters A, Liu WR (2014) Bioconj Chem 25:1730–1738CrossRefGoogle Scholar
  101. 101.
    Sachdeva A, Wang K, Elliott T, Chin JW (2014) J Am Chem Soc 136:7785–7788CrossRefGoogle Scholar
  102. 102.
    Wang K, Sachdeva A, Cox DJ, Wilf NW, Lang K, Wallace S, Mehl RA, Chin JW (2014) Nat Chem 6:393–403CrossRefGoogle Scholar
  103. 103.
    Lukinavičius G, Umezawa K, Olivier N, Honigmann A, Yang G, Plass T, Mueller V, Reymond L, Corrêa IR Jr, Luo Z-G, Schultz C, Lemke EA, Heppenstall P, Eggeling C, Manley S, Johnsson K (2013) Nat Chem 5:132–139CrossRefGoogle Scholar
  104. 104.
    Liu DS, Tangpeerachaikul A, Selvaraj R, Taylor MT, Fox JM, Ting AY (2012) J Am Chem Soc 134:792–795CrossRefGoogle Scholar
  105. 105.
    Brown SP, Smith AB (2015) J Am Chem Soc 137:4034–4037CrossRefGoogle Scholar
  106. 106.
    Devaraj NK, Upadhyay R, Haun JB, Hilderbrand SA, Weissleder R (2009) Angew Chem Int Ed 48:7013–7016CrossRefGoogle Scholar
  107. 107.
    Karver MR, Weissleder R, Hilderbrand SA (2012) Angew Chem Int Ed 51:920–922CrossRefGoogle Scholar
  108. 108.
    Devaraj NK, Hilderbrand S, Upadhyay R, Mazitschek R, Weissleder R (2010) Angew Chem Int Ed Engl 49:2869–2872CrossRefGoogle Scholar
  109. 109.
    Han H-S, Devaraj NK, Lee J, Hilderbrand SA, Weissleder R, Bawendi MG (2010) J Am Chem Soc 132:7838–7839CrossRefGoogle Scholar
  110. 110.
    Haun JB, Devaraj NK, Hilderbrand SA, Lee H, Weissleder R (2010) Nat Nano 5:660–665CrossRefGoogle Scholar
  111. 111.
    Haun JB, Devaraj NK, Marinelli BS, Lee H, Weissleder R (2011) ACS Nano 5:3204–3213CrossRefGoogle Scholar
  112. 112.
    Haun JB, Castro CM, Wang R, Peterson VM, Marinelli BS, Lee H, Weissleder R (2011) Scince Transl Med 3:71ra16Google Scholar
  113. 113.
    Han H-S, Niemeyer E, Huang Y, Kamoun WS, Martin JD, Bhaumik J, Chen Y, Roberge S, Cui J, Martin MR, Fukumura D, Jain RK, Bawendi MG, Duda DG (2015) Proc Natl Acad Sci 112:1350–1355CrossRefGoogle Scholar
  114. 114.
    Zlitni A, Janzen N, Foster FS, Valliant JF (2014) Angew Chem Int Ed 53:6459–6463CrossRefGoogle Scholar
  115. 115.
    Li Z, Cai H, Hassink M, Blackman ML, Brown RCD, Conti PS, Fox JM (2010) Chem Commun 46:8043–8045CrossRefGoogle Scholar
  116. 116.
    Herth MM, Andersen VL, Lehel S, Madsen J, Knudsen GM, Kristensen JL (2013) Chem Commun 49:3805–3807CrossRefGoogle Scholar
  117. 117.
    Knight JC, Richter S, Wuest M, Way JD, Wuest F (2013) Org Biomol Chem 11:3817–3825CrossRefGoogle Scholar
  118. 118.
    Rossin R, Renart Verkerk P, van den Bosch SM, Vulders RCM, Verel I, Lub J, Robillard MS (2010) Angew Chem Int Ed 49:3375–3378CrossRefGoogle Scholar
  119. 119.
    Evans HL, Nguyen Q-D, Carroll LS, Kaliszczak M, Twyman FJ, Spivey AC, Aboagye EO (2014) Chem Commun 50:9557–9560CrossRefGoogle Scholar
  120. 120.
    Nichols B, Qin Z, Yang J, Vera DR, Devaraj NK (2014) Chem Commun 50:5215–5217CrossRefGoogle Scholar
  121. 121.
    Zeglis BM, Sevak KK, Reiner T, Mohindra P, Carlin SD, Zanzonico P, Weissleder R, Lewis JS (2013) J Nucl Med 54:1389–1396CrossRefGoogle Scholar
  122. 122.
    Hang HC, Linder ME (2011) Chem Rev 111:6341–6358CrossRefGoogle Scholar
  123. 123.
    Erdmann RS, Takakura H, Thompson AD, Rivera-Molina F, Allgeyer ES, Bewersdorf J, Toomre D, Schepartz A (2014) Angew Chem Int Ed 53:10242–10246CrossRefGoogle Scholar
  124. 124.
    Simon JP, Ivanov IE, Adesnik M, Sabatini DD (1996) J Cell Biol 135:355–370CrossRefGoogle Scholar
  125. 125.
    Dube DH, Bertozzi CR (2005) Nat Rev Drug Discov 4:477–488CrossRefGoogle Scholar
  126. 126.
    Prescher JA, Bertozzi CR (2006) Cell 126:851–854CrossRefGoogle Scholar
  127. 127.
    Chang PV, Prescher JA, Hangauer MJ, Bertozzi CR (2007) J Am Chem Soc 129:8400–8401CrossRefGoogle Scholar
  128. 128.
    Cole CM, Yang J, Seckute J, Devaraj NK (2013) ChemBioChem 14:205–208CrossRefGoogle Scholar
  129. 129.
    Budin G, Yang KS, Reiner T, Weissleder R (2011) Angew Chem Int Ed 50:9378–9381CrossRefGoogle Scholar
  130. 130.
    Yang KS, Budin G, Reiner T, Vinegoni C, Weissleder R (2012) Angew Chem Int Ed Engl 51:6598–6603CrossRefGoogle Scholar
  131. 131.
    Su Y, Pan S, Li Z, Li L, Wu X, Hao P, Sze SK, Yao SQ (2015) Sci Rep 5:7724CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of California, San DiegoLa JollaUSA

Personalised recommendations