Topics in Current Chemistry

, 374:7 | Cite as

Emerging Approaches in Synchrotron Studies of Materials from Cultural and Natural History Collections

  • Loïc BertrandEmail author
  • Sylvain Bernard
  • Federica Marone
  • Mathieu Thoury
  • Ina Reiche
  • Aurélien Gourrier
  • Philippe Sciau
  • Uwe Bergmann
Part of the following topical collections:
  1. Analytical Chemistry for Cultural Heritage


Synchrotrons have provided significant methods and instruments to study ancient materials from cultural and natural heritages. New ways to visualise (surfacic or volumic) morphologies are developed on the basis of elemental, density and refraction contrasts. They now apply to a wide range of materials, from historic artefacts to paleontological specimens. The tunability of synchrotron beams owing to the high flux and high spectral resolution of photon sources is at the origin of the main chemical speciation capabilities of synchrotron-based techniques. Although, until recently, photon-based speciation was mainly applicable to inorganic materials, novel developments based, for instance, on STXM and deep UV photoluminescence bring new opportunities to study speciation in organic and hybrid materials, such as soaps and organometallics, at a submicrometric spatial resolution over large fields of view. Structural methods are also continuously improved and increasingly applied to hierarchically structured materials for which organisation results either from biological or manufacturing processes. High-definition (spectral) imaging appears as the main driving force of the current trend for new synchrotron techniques for research on cultural and natural heritage materials.


Synchrotron Palaeontology Cultural heritage  Archaeometry Imaging 



Computed tomography


Deep ultraviolet


Electron energy loss spectroscopy


Electron probe micro-analysis


Full field


Focused ion beam


Field of view


Fourier-transform Infrared spectroscopy






Million year


Near edge X-ray absorption fine structure (=XANES)


Proton induced X-ray emission




Projected pixel (voxel) size on the sample plane


Quantitative scanning SAXS imaging


Region of interest


Small-angle X-ray scattering




Scanning electron microscopy


Synchrotron radiation


Scanning transmission X-ray microscopy


Transmission electron microscopy




X-ray absorption near edge structure


X-ray absorption spectroscopy


X-ray diffraction


X-ray fluorescence



The IPANEMA platform is jointly developed by CNRS, the French Ministry of Culture and Communication and MNHN, and benefits from a CPER grant (MENESR, Région Ile-de-France) [23]. IPANEMA and Synchrotron SOLEIL are supported by the Research Infrastructures activity IPERION CH of the Horizon2020 Programme of the EU (Grant Agreement No. 654028). Support from the ERC project PaleoNanoLife (P.I.: F. Robert), the PATRIMA LabEx and within the agreement between the MNHN and IPANEMA is acknowledged. LB and UB acknowledge support from the France–Stanford Center for Interdisciplinary Studies Program. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource (SSRL), a user facility of the U.S. Department of Energy (DOE), Office of Basic Energy Sciences. The work performed on the 12.3.2 beamline was supported by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy, who operates ALS under contract No. DE-AC02-05CH11231.


  1. 1.
    Albéric M, Gourrier A, Müller K, Zizak I, Wagermaier W, Fratzl P, Reiche I (2014) Early diagenesis of elephant tusk in marine environment. Palaeogeogr Palaeoclimatol Palaeoecol 416:120–132CrossRefGoogle Scholar
  2. 2.
    Albertin F, Astolfo A, Stampanoni M, Peccenini E, Hwu Y, Kaplan F, Margaritondo G (2015) Ancient administrative handwritten documents: X-ray analysis and imaging. J Synchrotron Radiat 22(2):446–451. doi: 10.1107/S1600577515000314 CrossRefGoogle Scholar
  3. 3.
    Albertin F, Astolfo A, Stampanoni M, Peccenini E, Hwu Y, Kaplan F, Margaritondo G (2015) X-ray spectrometry and imaging for ancient administrative handwritten documents. X-ray Spectrom 44(3):93–98CrossRefGoogle Scholar
  4. 4.
    Alfeld M, Pedroso JV, van Eikema Hommes M, Van der Snickt G, Tauber G, Blaas J, Haschke M, Erler K, Dik J, Janssens K (2013) A mobile instrument for in situ scanning macro-XRF investigation of historical paintings. J Anal At Spectrom 28(5):760–767CrossRefGoogle Scholar
  5. 5.
    Alfeld M, Siddons DP, Janssens K, Dik J, Woll AR, Kirkham R, van de Wetering E (2013) Visualizing the 17th century underpainting in Portrait of an old man by Rembrandt van Rijn using synchrotron-based scanning macro-XRF. Appl Phys A 111(1):157–164. doi: 10.1007/s00339-012-7490-5 CrossRefGoogle Scholar
  6. 6.
    Alleon J, Bernard S, Remusat L, Robert F (2015) Estimation of nitrogen-to-carbon ratios of organics and carbon materials at the submicrometer scale. Carbon 84:290–298CrossRefGoogle Scholar
  7. 7.
    Als-Nielsen J, McMorrow D (2011) Elements of modern X-ray physics, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  8. 8.
    Barbi M, Tokaryk T, Tolhurst T (2014) Synchrotron radiation as a tool in paleontology. Phys Can 70(1):8–12Google Scholar
  9. 9.
    Benzerara K, Menguy N, López-García P, Yoon TH, Kazmierczak J, Tyliszczak T, Guyot F, Brown GE (2006) Nanoscale detection of organic signatures in carbonate microbialites. Proc Nat Acad Sci 103(25):9440–9445CrossRefGoogle Scholar
  10. 10.
    Bergmann U (2007) Archimedes brought to light. Phys World 20:39–42. doi: 10.1038/435257a CrossRefGoogle Scholar
  11. 11.
    Bergmann U (2011) Imaging with X-ray fluorescence. In: Netz R, Noel W, Wilson N, Tchernetska N (eds) The archimedes palimpsest, vol 1, chap. 6. Cambridge University Press, CambridgeGoogle Scholar
  12. 12.
    Bergmann U, Knox KT (2009) Pseudo-color enhanced X-ray fluorescence imaging of the archimedes palimpsest. In: IS&T/SPIE electronic imaging. International Society for Optics and Photonics, pp 724702–724702Google Scholar
  13. 13.
    Bergmann U, Manning PL, Wogelius RA (2012) Chemical mapping of paleontological and archaeological artifacts with synchrotron X-rays. Ann Rev Anal Chem 5(1):361–389. doi: 10.1146/annurev-anchem-062011-143019 CrossRefGoogle Scholar
  14. 14.
    Bergmann U, Morton RW, Manning PL, Sellers WI, Farrar S, Huntley KG, Wogelius RA, Larson P (2010) Archaeopteryx feathers and bone chemistry fully revealed via synchrotron imaging. Proc Natl Acad Sci USA 107(20):9060–9065. doi: 10.1073/pnas.1001569107 CrossRefGoogle Scholar
  15. 15.
    Berna F, Matthews A, Weiner S (2004) Solubilities of bone mineral from archaeological sites: the recrystallization window. J Archaeol Sci 31(7):867–882CrossRefGoogle Scholar
  16. 16.
    Bernard S, Benzerara K, Beyssac O, Brown GE Jr, Stamm LG, Duringer P (2009) Ultrastructural and chemical study of modern and fossil sporoderms by scanning transmission X-ray microscopy (STXM). Rev Palaeobot Palynol 156(1–2):248–261. doi: 10.1016/j.revpalbo.2008.09.002 CrossRefGoogle Scholar
  17. 17.
    Bernard S, Benzerara K, Beyssac O, Menguy N, Guyot F, Brown GE Jr, Goffe B (2007) Exceptional preservation of fossil plant spores in high-pressure metamorphic rocks. Earth Planet Sci Lett 262(1–2):257–272. doi: 10.1016/j.epsl.2007.07.041 CrossRefGoogle Scholar
  18. 18.
    Bernard S, Papineau D (2014) Graphitic carbons and biosignatures. Elements 10:435–440CrossRefGoogle Scholar
  19. 19.
    Bertini M, Mokso R, Krupp EM (2014) Unwinding the spiral: discovering the manufacturing method of iron age scottish glass beads. J Archaeol Sci 43:256–266CrossRefGoogle Scholar
  20. 20.
    Bertrand L, Cotte M, Stampanoni M, Thoury M, Marone F, Schöder S (2012) Development and trends in synchrotron studies of ancient and historical materials. Phys Rep 519(2):51–96. doi: 10.1016/j.physrep.2012.03.003 CrossRefGoogle Scholar
  21. 21.
    Bertrand L, Dillmann P, Reiche I (2015) Synchrotron radiation and neutrons in art and archaeology 2014 (editorial). J Anal At Spectrom 30:540–541. doi: 10.1039/C5JA90006A CrossRefGoogle Scholar
  22. 22.
    Bertrand L, Doucet J, Dumas P, Simionovici A, Tsoucaris G, Walter P (2003) Microbeam synchrotron imaging of hairs from Ancient Egyptian mummies. J Synchrotron Rad 10(5):387–392. doi: 10.1107/S0909049503015334 CrossRefGoogle Scholar
  23. 23.
    Bertrand L, Languille MA, Cohen SX, Robinet L, Gervais C, Leroy S, Bernard D, Le Pennec E, Josse W, Doucet J, Schöder S (2011) European research platform IPANEMA at the SOLEIL synchrotron for ancient and historical materials. J Synchrotron Rad 18(5):765–772. doi: 10.1107/S090904951102334X CrossRefGoogle Scholar
  24. 24.
    Bertrand L, Réfrégiers M, Berrie B, Echard JP, Thoury M (2013) A multiscalar photoluminescence approach to discriminate among semiconducting historical zinc white pigments. Analyst 138(16):4463–4469. doi: 10.1039/C3AN36874B CrossRefGoogle Scholar
  25. 25.
    Bertrand L, Réguer S, Doucet J (2007) Le synchrotron, un outil polyvalent pour l’étude chimique des matériaux du patrimoine (Synchrotron: a versatile tool for the chemical study of heritage materials). Act Chim 312–313:105–111Google Scholar
  26. 26.
    Bertrand L, Robinet L, Cohen SX, Sandt C, Le Hô AS, Soulier B, Lattuati-Derieux A, Echard JP (2011) Identification of the finishing technique of an early eighteenth century musical instrument using FTIR spectromicroscopy. Anal Bioanal Chem 399(9):3025–3032. doi: 10.1007/s00216-010-4288-1 CrossRefGoogle Scholar
  27. 27.
    Bertrand L, Robinet L, Thoury M, Janssens K, Cohen SX, Schöder S (2012) Cultural heritage and archaeology materials studied by synchrotron spectroscopy and imaging. Appl Phys A 106(2):377–396. doi: 10.1007/s00339-011-6686-4 CrossRefGoogle Scholar
  28. 28.
    Bertrand L, Schöder S, Anglos D, Breese MBH, Janssens K, Moini M, Simon A (2015) Mitigation strategies for radiation damage in the analysis of ancient materials. Trends Anal Chem 66:128–145. doi: 10.1016/j.trac.2014.10.005 CrossRefGoogle Scholar
  29. 29.
    Bertrand L, Thoury M, Anheim E (2013) Ancient materials specificities for their synchrotron examination and insights into their epistemological implications. J Cult Heritage 14(4):277–289. doi: 10.1016/j.culher.2012.09.003 CrossRefGoogle Scholar
  30. 30.
    Bocherens H, Polet C, Toussaint M (2007) Palaeodiet of Mesolithic and Neolithic populations of Meuse Basin (Belgium): evidence from stable isotopes. J Archaeol Sci 34(1):10–27CrossRefGoogle Scholar
  31. 31.
    Bonse U, Hart M (1965) An x-ray interferometer with long separated interfering beam paths. Appl Phys Lett 7(4):99–100. doi: 10.1063/1.1754330 CrossRefGoogle Scholar
  32. 32.
    Born M, Wolf E (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  33. 33.
    Branco W (1906) Die Anwendung der Röntgenstrahlen in der Paläontologie. der Königl. Akad. der Wiss, VerlagGoogle Scholar
  34. 34.
    Braun A, Huggins FE, Shah N, Chen Y, Wirick S, Mun SB, Jacobsen C, Huffman GP (2005) Advantages of soft X-ray absorption over TEM-EELS for solid carbon studies—a comparative study on diesel soot with EELS and NEXAFS. Carbon 43:117–124CrossRefGoogle Scholar
  35. 35.
    Briggs DE, Summons RE (2014) Ancient biomolecules: their origins, fossilization, and role in revealing the history of life. BioEssays 36(5):482–490CrossRefGoogle Scholar
  36. 36.
    Bronnikov AV (2002) Theory of quantitative phase-contrast computed tomography. J Opt Soc Am A 19(3):472–480CrossRefGoogle Scholar
  37. 37.
    Buckley M, Kansa SW, Howard S, Campbell S, Thomas-Oates J, Collins M (2010) Distinguishing between archaeological sheep and goat bones using a single collagen peptide. J Archaeol Sci 37(1):13–20CrossRefGoogle Scholar
  38. 38.
    Buckley M, Walker A, Ho SYW, Yang Y, Smith C, Ashton P, Oates JT, Cappellini E, Koon H, Penkman K, Elsworth B, Ashford D, Solazzo C, Andrews P, Strahler J, Shapiro B, Ostrom P, Gandhi H, Miller W, Raney B, Zylber MI, Gilbert MTP, Prigodich RV, Ryan M, Rijsdijk KF, Janoo A, Collins MJ (2008) Comment on “protein sequences from mastodon and tyrannosaurus rex revealed by mass spectrometry”. Science 319(5859):33. doi: 10.1126/science.1147046.
  39. 39.
    Burger C, Zhou H, Wang H, Sics I, Hsiao BS, Chu B, Graham L, Glimcher MJ (2008) Lateral packing of mineral crystals in bone collagen fibrils. Biophys J 95(4):1985–1992CrossRefGoogle Scholar
  40. 40.
    Casini A, Lotti F, Picollo M, Stefani L, Aldrovandi A (2003) Fourier transform interferometric imaging spectrometry: a new tool for the study of reflectance and fluorescence of polychrome surfaces. Conservation science 2002: papers from the conference held in Edinburgh, Scotland 22–24 May 2002. Archetype Publications, Edinburgh, Scotland, pp 249–253Google Scholar
  41. 41.
    Chadefaux C., Reiche I. (2009) Archaeological bone from macro-to nanoscale: heat-induced modifications at low temperatures. J Nano Res 8:157–172. Trans Tech PublGoogle Scholar
  42. 42.
    Chadefaux C, Vignaud C, Chalmin É, Robles-Camacho J, Arroyo-Cabrales J, Johnson E, Reiche I (2009) Color origin and heat evidence of paleontological bones: case study of blue and gray bones from San Josecito Cave. Mexico Am Miner 94(1):27–33. doi: 10.2138/am.2009.2860 CrossRefGoogle Scholar
  43. 43.
    Chapman D, Thomlinson W, Johnston RE, Washburn D, Pisano E, Gmur N, Zhong Z, Menk R, Arfelli F, Sayers D (1997) Diffraction enhanced x-ray imaging. Phys Med Biol 42(11): 2015–2025.
  44. 44.
    Cianchetta I, Trentelman K, Maish J, Saunders D, Foran B, Walton M, Sciau P, Wang T, Pouyet E, Cotte M, Meirer F, Liu Y, Pianetta P, Mehta A (2015) Evidence for an unorthodox firing sequence employed by the Berlin Painter: deciphering ancient ceramic firing conditions through high-resolution material characterization and replication. J Anal At Spectrom 30(3):666–676. doi: 10.1039/C4JA00376D CrossRefGoogle Scholar
  45. 45.
    Cloetens P, Barrett R, Baruchel J, Guigay JP, Schlenker M (1996) Phase objects in synchrotron radiation hard X-ray imaging. J Phys D Appl Phys 29(1):133–146CrossRefGoogle Scholar
  46. 46.
    Cloetens P, Ludwig W, Baruchel J, van Dyck D, van Landuyt J, Guigay JP, Schlenker M (1999) Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation X-rays. Appl Phys Lett 75(19):2912–2914. doi: 10.1063/1.125225 CrossRefGoogle Scholar
  47. 47.
    Cody GD, Gupta NS, Briggs DEG, Kilcoyne ALD, Summons RE, Kenig F, Plotnick RE, Scott AC (2011) Molecular signature of chitin-protein complex in Paleozoic arthropods. Geology 39(3):255–258. doi: 10.1130/G31648.1 CrossRefGoogle Scholar
  48. 48.
    Cohen SX, Pennec EL (2014) Unsupervised segmentation of spectral images with a spatialized gaussian mixture model and model selection. Oil Gas Sci Technol 69(2):245–260CrossRefGoogle Scholar
  49. 49.
    Collins M, Nielsen-Marsh C, Hiller J, Smith C, Roberts J, Prigodich R, Wess T, Csapo J, Millard A, Turner-Walker G (2002) The survival of organic matter in bone: a review. Archaeometry 44(3):383–394CrossRefGoogle Scholar
  50. 50.
    Collinson ME, Smith SY, Manchester SR, Wilde V, Howard LE, Robson BE, Ford DS, Marone F, Fife JL, Stampanoni M (2012) The value of x-ray approaches in the study of the messel fruit and seed flora. Palaeobiodiversity Palaeoenvironments 92(4):403–416CrossRefGoogle Scholar
  51. 51.
    Cook PK, Dufour É, Languille MA, Mocuta C, Réguer S, Bertrand L (2015) Strontium speciation in archaeological otoliths. J Anal At Spectrom. doi: 10.1039/C5JA00426H Google Scholar
  52. 52.
    Cook PK, Languille MA, Dufour É, Mocuta C, Tombret O, Fortuna F, Bertrand L (2015) Biogenic and diagenetic indicators in archaeological and modern otoliths: potential and limits of high-definition synchrotron micro-XRF elemental mapping. Chem Geol 414:1–15. doi: 10.1016/j.chemgeo.2015.08.017 CrossRefGoogle Scholar
  53. 53.
    Cosmidis J, Benzerara K (2014) Soft X-ray scanning transmission spectromicroscopy. In: DiMasi E, Gower LB (eds) Biomineralization Sourcebook: characterization of biominerals and biomimetic materials, chap. 8. CRC Press, Boca Raton, Florida, USA, pp 115–134Google Scholar
  54. 54.
    Cosmidis J, Benzerara K, Gheerbrant E, Esteve I, Bouya B, Amaghzaz M (2013) Nanometer-scale characterization of exceptionally preserved bacterial fossils in Paleocene phosphorites from Ouled Abdoun (Morocco). Geobiology 11(2):139–153. doi: 10.1111/gbi.12022 CrossRefGoogle Scholar
  55. 55.
    Cosmidis J, Benzerara K, Menguy N, Arning E (2013) Microscopy evidence of bacterial microfossils in phosphorite crusts of the Peruvian shelf: Implications for phosphogenesis mechanisms. Chem Geol 359:10–22CrossRefGoogle Scholar
  56. 56.
    Cotte M, Checroun É, Mazel V, Solé VA, Richardin P, Taniguchi Y, Walter P, Susini J (2009) Combination of FTIR and X-rays synchrotron-based micro-imaging techniques for the study of ancient paintings. A practical point of view. e-Preserv. Science 6:1–9Google Scholar
  57. 57.
    Cotte M, Dumas P, Taniguchi Y, Checroun É, Walter P, Susini J (2009) Recent applications and current trends in Cultural Heritage Science using synchrotron-based Fourier transform infrared micro-spectroscopy. C R Phys 10(7):590–600. doi: 10.1016/j.crhy.2009.03.016 CrossRefGoogle Scholar
  58. 58.
    Cotte M, Susini J, Dik J, Janssens K (2010) Synchrotron-based X-ray absorption spectroscopy for art conservation: looking back and looking forward. Acc Chem Res 43(6):705–714. doi: 10.1021/ar900199m CrossRefGoogle Scholar
  59. 59.
    Cunningham JA, Rahman IA, Lautenschlager S, Rayfield EJ, Donoghue PC (2014) A virtual world of paleontology. Trends Ecol Evol 29(6):347–357CrossRefGoogle Scholar
  60. 60.
    Cunningham JA, Vargas K, Pengju L, Belivanova V, Marone F, Martínez-Pérez C, Guizar-Sicairos M, Holler M, Bengtson S, Donoghue PC (2015) Critical appraisal of tubular putative eumetazoans from the Ediacaran Weng’an Doushantuo biota. Proc R Soc B 282(1812):20151,169CrossRefGoogle Scholar
  61. 61.
    Currey JD (2002) Bones: structure and mechanics. Princeton University Press, PrincetonGoogle Scholar
  62. 62.
    Davis GR, Mills D (2014) Brute force absorption contrast microtomography. In: Stock SR (ed) Developments in X-ray tomography IX, SPIE optical engineering and applications, p 92120I. International Society for Optics and PhotonicsGoogle Scholar
  63. 63.
    Davis T, Gao D, Gureyev T, Stevenson A, Wilkins S (1995) Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature 373(6515):595–598CrossRefGoogle Scholar
  64. 64.
    De Gregorio BT, Sharp TG, Flynn GJ, Wirick S, Hervig RL (2009) Biogenic origin for earth’s oldest putative microfossils. Geology 37(7):631–634CrossRefGoogle Scholar
  65. 65.
    Dejoie C, McCusker LB, Baerlocher C, Kunz M, Tamura N (2013) Can Laue microdiffraction be used to solve and refine complex inorganic structures? J Appl Crystallogr 46(6):1805–1816CrossRefGoogle Scholar
  66. 66.
    Dejoie C, Sciau P, Li W, Noé L, Mehta A, Chen K, Luo H, Kunz M, Tamura N, Liu Z (2014) Learning from the past: rare \(\varepsilon \)-Fe2O3 in the ancient black-glazed Jian (Tenmoku) wares. Sci Rep 4(4941). doi: 10.1038/srep04941
  67. 67.
    Dejoie C, Tamura N, Kunz M, Goudeau P, Sciau P (2015) Complementary use of monochromatic and white-beam X-ray micro-diffraction for the investigation of ancient materials. J Appl Cryst 48. doi: 10.1107/S1600576715014983
  68. 68.
    Dik J, Janssens K, van der Snickt G, van der Loeff L, Rickers K, Cotte M (2008) Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based X-ray fluorescence elemental mapping. Anal Chem 80:6436–6442. doi: 10.1021/ac800965g CrossRefGoogle Scholar
  69. 69.
    Dooryhée É, Martinetto P, Walter P, Anne M (2004) Synchrotron X-ray analyses in art and archaeology. Rad Phys Chem 71(3–4):863–868. doi: 10.1016/j.radphyschem.2004.04.129 CrossRefGoogle Scholar
  70. 70.
    Echard JP, Thoury M, Berrie BH, Séverin-Fabiani T, Vichi A, Didier M, Réfrégiers M, Bertrand L (2015) Synchrotron DUV luminescence micro-imaging to identify and map historical organic coatings on wood. Analyst 140(15):5344–5353. doi: 10.1039/C5AN00483G CrossRefGoogle Scholar
  71. 71.
    Edwards N, Wogelius RA, Bergmann U, Larson P, Sellers W, Manning P (2013) Mapping prehistoric ghosts in the synchrotron. Appl Phys A 111(1):147–155CrossRefGoogle Scholar
  72. 72.
    Ehrlich H, Rigby JK, Botting J, Tsurkan M, Werner C, Schwille P, Petrášek Z, Pisera A, Simon P, Sivkov V et al (2013) Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta. Sci Rep 3:3497CrossRefGoogle Scholar
  73. 73.
    Ferreira ESB., Boon JJ, Stampanoni M, Marone F (2011) Study of the mechanism of formation of calcium soaps in an early 20th-century easel painting with correlative 2D and 3D microscopy. In: Proceedings of 16th ICOM-CC triennial conference, Lisbon, Portugal, September 19–23, 2011Google Scholar
  74. 74.
    Francis J, Hitchcock A (1992) Inner-shell spectroscopy of p-benzoquinone, hydroquinone, and phenol: distinguishing quinoid and benzenoid structures. J Phys Chem 96(16):6598–6610CrossRefGoogle Scholar
  75. 75.
    Fratzl P, Fratzl-Zelman N, Klaushofer K, Vogl G, Koller K (1991) Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcif Tissue Int 48(6):407–413CrossRefGoogle Scholar
  76. 76.
    Fratzl P, Gupta HS, Paris O, Valenta A, Roschger P, Klaushofer K (2005) Diffracting “stacks of cards”—some thoughts about small-angle scattering from bone. In: Scattering methods and the properties of polymer materials. Springer, New York, pp 33–39Google Scholar
  77. 77.
    Fratzl P, Schreiber S, Klaushofer K (1996) Bone mineralization as studied by small-angle X-ray scattering. Connect Tissue Res 34(4):247–254CrossRefGoogle Scholar
  78. 78.
    Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mat Sci 52(8):1263–1334. doi: 10.1016/j.pmatsci.2007.06.001 CrossRefGoogle Scholar
  79. 79.
    Friis EM, Marone F, Pedersen KR, Crane PR, Stampanoni M (2014) Three-dimensional visualization of fossil flowers, fruits, seeds, and other plant remains using synchrotron radiation x-ray tomographic microscopy (srxtm): new insights into cretaceous plant diversity. J Paleontol 88(4):684–701CrossRefGoogle Scholar
  80. 80.
    Friis EM, Pedersen KR, Marone F (2014) Arcellites punctatus sp. nov.: a new megaspore from the early cretaceous of portugal studied using high resolution synchrotron radiation X-ray tomographic microscopy (SRXTM). Grana 53(2):91–102CrossRefGoogle Scholar
  81. 81.
    Garino C, Borfecchia E, Gobetto R, van Bokhoven JA, Lamberti C (2014) Determination of the electronic and structural configuration of coordination compounds by synchrotron-radiation techniques. Coord Chem Rev 277:130–186CrossRefGoogle Scholar
  82. 82.
    Gerritsen HC, van der Oord CJR, Levine YK, Munro HI, Jones GR, Shaw DA, Rommerts FF (1994) Fluorescence imaging and time-resolved spectroscopy of steroid using confocal synchrotron radiation microscopy. In: Lakowicz JR (ed) Time-resolved laser spectroscopy in biochemistry IV, vol 2137. Los Angeles, CAGoogle Scholar
  83. 83.
    Gervais C, Thoury M, Reguer S, Mass J (2015) Radiation damages during synchrotron X-ray micro-analyses of prussian blue and zinc white historic paintings: detection, mitigation and integration. Appl Phys A 121(3):949–955CrossRefGoogle Scholar
  84. 84.
    Gill PG, Purnell MA, Crumpton N, Brown KR, Gostling NJ, Stampanoni M, Rayfield EJ (2014) Dietary specializations and diversity in feeding ecology of the earliest stem mammals. Nature 512(7514):303–305CrossRefGoogle Scholar
  85. 85.
    Gourrier A, Bunk O, Müller K, Reiche I (2011) Artificially heated bone at low temperatures: a quantitative scanning-small-angle X-ray scattering imaging study of the mineral particle size. ArcheoSciences Revue d’archéométrie 35:191–199CrossRefGoogle Scholar
  86. 86.
    Gourrier A, Li C, Siegel S, Paris O, Roschger P, Klaushofer K, Fratzl P (2010) Scanning small-angle X-ray scattering analysis of the size and organization of the mineral nanoparticles in fluorotic bone using a stack of cards model. J Appl Crystallogr 43(6):1385–1392CrossRefGoogle Scholar
  87. 87.
    Gourrier A, Wagermaier W, Burghammer M, Lammie D, Gupta HS, Fratzl P, Riekel C, Wess TJ, Paris O (2007) Scanning X-ray imaging with small-angle scattering contrast. J Appl Cryst 40:S78–S82CrossRefGoogle Scholar
  88. 88.
    Groso A, Abela R, Stampanoni M (2006) Implementation of a fast method for high resolution phase contrast tomography. Opt Exp 14(18):8103–8110CrossRefGoogle Scholar
  89. 89.
    Gueriau P, Bernard S, Bertrand L (2016) Synchrotron advanced imaging of paleontological specimens. Elements 12(1) (in press)Google Scholar
  90. 90.
    Gueriau P, Bertrand L (2015) Deciphering exceptional preservation of fossils through trace elemental imaging. Microsc Today 23(3):2–6. doi: 10.1017/S1551929515000024 CrossRefGoogle Scholar
  91. 91.
    Gueriau P, Mocuta C, Bertrand L (2015) Cerium anomaly at microscale in fossils. Anal Chem 87(17):8827–8836. doi: 10.1021/acs.analchem.5b01820 CrossRefGoogle Scholar
  92. 92.
    Gueriau P, Mocuta C, Dutheil DB, Cohen SX, Thiaudière D, The OT1 consortium, Charbonnier S, Clément G, Bertrand L (2014) Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils. Plos One 9(1):e86946Google Scholar
  93. 93.
    Hedges RE (2002) Bone diagenesis: an overview of processes. Archaeometry 44(3):319–328CrossRefGoogle Scholar
  94. 94.
    Hernández Cruz D, Rousseau ME, West MM, Pézolet M, Hitchcock AP (2006) Quantitative mapping of the orientation of fibroin \(\beta \)-sheets in B. mori cocoon fibers by scanning transmission X-ray microscopy. Biomacromolecules 7(3):836–843CrossRefGoogle Scholar
  95. 95.
    Hiller JC, Thompson TJU, Evison MP, Chamberlain AT, Wess TJ (2003) Bone mineral change during experimental heating: an X-ray scattering investigation. Biomaterials 24(28):5091–5097. doi: 10.1016/S0142-9612(03)00427-7 CrossRefGoogle Scholar
  96. 96.
    Hiller JC, Wess TJ (2006) The use of small-angle X-ray scattering to study archaeological and experimentally altered bone. J Archaeol Sci 33(4):560–572. doi: 10.1016/j.jas.2005.09.012 CrossRefGoogle Scholar
  97. 97.
    Hitchcock A, Morin C, Heng Y, Cornelius R, Brash J (2002) Towards practical soft X-ray spectromicroscopy of biomaterials. J Biomater Sci Polym Ed 13(8):919–937CrossRefGoogle Scholar
  98. 98.
    Hitchcock AP, Dynes JJ, Johansson G, Wang J, Botton G (2008) Comparison of NEXAFS microscopy and TEM-EELS for studies of soft matter. Micron 39:311–319CrossRefGoogle Scholar
  99. 99.
    Holmes JM, Beebe RA, Posner AS, Harper RA (1970) Surface areas of synthetic calcium phosphates and bone mineral. Exp Biol Med 133(4):1250–1253CrossRefGoogle Scholar
  100. 100.
    Ice GE, Budai JD, Pang JW (2011) The race to X-ray microbeam and nanobeam science. Science 334(6060):1234–1239CrossRefGoogle Scholar
  101. 101.
    Ice GE, Pang JW (2009) Tutorial on X-ray microLaue diffraction. Mat Charact 60(11):1191–1201CrossRefGoogle Scholar
  102. 102.
    Ishii I, Hitchcook A (1988) The oscillator strengths for C1s and O1s excitation of some saturated and unsaturated organic alcohols, acids and esters. J Elect Spectrosc Relat Phenom 46(1):55–84CrossRefGoogle Scholar
  103. 103.
    Janssens K, Alfeld M, Van der Snickt G, De Nolf W, Vanmeert F, Radepont M, Monico L, Dik J, Cotte M, Falkenberg G, Miliani C, Brunetti BG (2013) The use of synchrotron radiation for the characterization of artists’ pigments and paintings. Ann Rev Anal Chem 6(1):399–425. doi: 10.1146/annurev-anchem-062012-092702 CrossRefGoogle Scholar
  104. 104.
    Janssens K, Dik J, Cotte M, Susini J (2010) Photon-based techniques for nondestructive subsurface analysis of painted cultural heritage artifacts. Acc Chem Res 43(6):814–825. doi: 10.1021/ar900248e CrossRefGoogle Scholar
  105. 105.
    Jarcho S (1964) Lead in the bones of prehistoric lead-glaze potters. Am Antiq 30(1):94–96CrossRefGoogle Scholar
  106. 106.
    Kak A, Slaney M (2001) Principles of computerized tomographic imaging. Society of Industial and Applied Mathematics, Philadelphia, USACrossRefGoogle Scholar
  107. 107.
    Kalsbeek N, Richter J (2006) Preservation of burned bones: an investigation of the effects of temperature and ph on hardness. Stud Conserv 51(2):123–138CrossRefGoogle Scholar
  108. 108.
    Koon H, Nicholson R, Collins M (2003) A practical approach to the identification of low temperature heated bone using tem. J Archaeol Sci 30(11):1393–1399CrossRefGoogle Scholar
  109. 109.
    Koon H, O’Connor T, Collins M (2010) Sorting the butchered from the boiled. J Archaeol Sci 37(1):62–69CrossRefGoogle Scholar
  110. 110.
    Krueger KK (1974) The use of ultraviolet light in the study of fossil shells. Curator Mus J 17(1):36–49CrossRefGoogle Scholar
  111. 111.
    Kunz M, Chen K, Tamura N, Wenk HR (2009) Evidence for residual elastic strain in deformed natural quartz. Am Mineral 94(7):1059–1062CrossRefGoogle Scholar
  112. 112.
    Lakes R (1993) Materials with structural hierarchy. Nature 361(6412):511–515CrossRefGoogle Scholar
  113. 113.
    Landis WJ, Glimcher MJ (1978) Electron diffraction and electron probe microanalysis of the mineral phase of bone tissue prepared by anhydrous techniques. J Ultrastruct Res 63(2):188–223CrossRefGoogle Scholar
  114. 114.
    Langer M, Cloetens P, Pacureanu A, Peyrin F (2012) X-ray in-line phase tomography of multimaterial objects. Optics Lett 37(11):2151–2153CrossRefGoogle Scholar
  115. 115.
    Larson B, Yang W, Ice G, Budai J, Tischler J (2002) Three-dimensional X-ray structural microscopy with submicrometre resolution. Nature 415(6874):887–890CrossRefGoogle Scholar
  116. 116.
    Léa V (2005) Raw, pre-heated or ready to use: discovering specialist supply systems for flint industries in mid-Neolithic (Chassey culture) communities in southern France. Antiquity 79(303):51–65CrossRefGoogle Scholar
  117. 117.
    Li J, Benzerara K, Bernard S, Beyssac O (2013) The link between biomineralization and fossilization of bacteria: insights from field and experimental studies. Chem Geol 359:49–69CrossRefGoogle Scholar
  118. 118.
    Li J, Bernard S, Benzerara K, Beyssac O, Allard T, Cosmidis J, Moussou J (2014) Impact of biomineralization on the preservation of microorganisms during fossilization: An experimental perspective. Earth Planet Sci Lett 400:113–122CrossRefGoogle Scholar
  119. 119.
    Lin Y, Seales WB (2005) Opaque document imaging: building images of inaccessible texts. In: Tenth IEEE international conference on computer vision, 2005. ICCV 2005, vol 1, pp 662–669. IEEEGoogle Scholar
  120. 120.
    Liu Z, Mehta A, Tamura N, Pickard D, Rong B, Zhou T, Pianetta P (2007) Influence of Taoism on the invention of the purple pigment used on the Qin terracotta warriors. J Archaeol Sci 34:1878–1883. doi: 10.1016/j.jas.2007.01.005 CrossRefGoogle Scholar
  121. 121.
    Lynch PA, Tamura N, Lau D, Madsen I, Liang D, Strohschnieder M, Stevenson AW (2007) Application of white-beam X-ray microdiffraction for the study of mineralogical phase identification in ancient egyptian pigments. J Appl Cryst 40:1089–1096. doi: 10.1107/S0021889807041003 CrossRefGoogle Scholar
  122. 122.
    Manso M, Carvalho M (2009) Application of spectroscopic techniques for the study of paper documents: a survey. Spectrochim Acta B 64(6):482–490. doi: 10.1016/j.sab.2009.01.009 10th Rio Symposium on Atomic SpectrometryCrossRefGoogle Scholar
  123. 123.
    Maser J, Osanna A, Wang Y, Jacobsen C, Kirz J, Spector S, Winn B, Tennant D (2000) Soft X-ray microscopy with a cryo scanning transmission x-ray microscope: I. Instrumentation, imaging and spectroscopy. J Microsc 197(1):68–79CrossRefGoogle Scholar
  124. 124.
    Meirer F, Cabana J, Liu Y, Mehta A, Andrews JC, Pianetta P (2011) Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission x-ray microscopy. Synchrotron Radiat 18(5):773–781CrossRefGoogle Scholar
  125. 125.
    Meirer F, Liu Y, Pouyet E, Fayard B, Cotte M, Sanchez C, Andrews JC, Mehta A, Sciau P (2013) Full-field XANES analysis of Roman ceramics to estimate firing conditions—a novel probe to study hierarchical heterogeneous materials. J Anal At Spectrom 28:1870–1883CrossRefGoogle Scholar
  126. 126.
    Mills D, Samko O, Rosin P, Thomas K, Wess T, Davis GR (2012) Apocalypto: revealing the unreadable. In: Stock SR (ed) Developments in X-ray tomography VIII, SPIE Optical Engineering and Applications, vol 8506. International Society for Optics and Photonics, San Diego, California, USA, p 85060AGoogle Scholar
  127. 127.
    Miot J, Li J, Benzerara K, Sougrati MT, Ona-Nguema G, Bernard S, Jumas JC, Guyot F (2014) Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation. Geochim Cosmochim Acta 139:327–343CrossRefGoogle Scholar
  128. 128.
    Mocella V, Brun E, Ferrero C, Delattre D (2015) Revealing letters in rolled Herculaneum papyri by X-ray phase-contrast imaging. Nat Comm 6:5895CrossRefGoogle Scholar
  129. 129.
    Moini M, Rollman C, Fleskes R (2014) Molecular level effects of natural aging, as well as chemical and radiation exposures on museums’ proteinaceous specimens. In: Proceedings of American Society for mass spectrometry meeting 2013Google Scholar
  130. 130.
    Mokso R, Marone F, Haberthür D, Schittny J, Mikuljan G, Isenegger A, Stampanoni M (2011) Following dynamic processes by X-ray tomographic microscopy with sub-second temporal resolution. In: The 10th international conference on X-ray microscopy, vol 1365. AIP Publishing, New York, pp 38–41Google Scholar
  131. 131.
    Momose A (1995) Demonstration of phase-contrast X-ray computed tomography using an X-ray interferometer. Nucl Instrum Methods Phys Res Sect A 352(3):622–628CrossRefGoogle Scholar
  132. 132.
    Moreau JD, Cloetens P, Gomez B, Daviero-Gomez V, Néraudeau D, Lafford TA, Tafforeau P (2014) Multiscale 3D virtual dissections of 100-million-year-old flowers using X-ray synchrotron micro- and nanotomography. Microsc Microanal 20(1):305–312. doi: 10.1017/S1431927613014025 CrossRefGoogle Scholar
  133. 133.
    Myneni SC (2002) Soft X-ray spectroscopy and spectromicroscopy studies of organic molecules in the environment. Rev Mineral Geochem 49(1):485–579CrossRefGoogle Scholar
  134. 134.
    Nevin A, Osticioli I, Anglos D, Burnstock A, Cather S, Castellucci E (2007) Raman spectra of proteinaceous materials used in paintings: a multivariate analytical approach for classification and identification. Anal Chem 79(16):6143–6151. doi: 10.1021/ac070373j CrossRefGoogle Scholar
  135. 135.
    Obst M, Schmid G (2014) 3D chemical mapping: application of scanning transmission (soft) X-ray microscopy (STXM) in combination with angle-scan tomography in bio-, geo-, and environmental sciences. Methods Mol Biol 1117:757–781CrossRefGoogle Scholar
  136. 136.
    Paganin D, Mayo S, Gureyev T, Miller P, Wilkins S (2002) Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsci Oxford 206(1):33–40CrossRefGoogle Scholar
  137. 137.
    Picard A, Kappler A, Schmid G, Quaroni L, Obst M (2015) Experimental diagenesis of organo-mineral structures formed by microaerophilic Fe(II)-oxidizing bacteria. Nat Commun 6:6277CrossRefGoogle Scholar
  138. 138.
    Pons MN, Le Bonté S, Potier O (2004) Spectral analysis and fingerprinting for biomedia characterisation. J Biotechnol 113(1):211–230CrossRefGoogle Scholar
  139. 139.
    Popescu BFG, George MJ, Bergmann U, Garachtchenko AV, Kelly ME, McCrea RP, Lüning K, Devon RM, George GN, Hanson AD et al (2009) Mapping metals in Parkinson’s and normal brain using rapid-scanning X-ray fluorescence. Phys Med Biol 54(3):651CrossRefGoogle Scholar
  140. 140.
    Posner AS (1969) Crystal chemistry of bone mineral. Physiol Rev 49(4):760–92CrossRefGoogle Scholar
  141. 141.
    Pradel A, Langer M, Maisey JG, Geffard-Kuriyama D, Cloetens P, Janvier P, Tafforeau P (2009) Skull and brain of a 300-million-year-old chimaeroid fish revealed by synchrotron holotomography. Proc Natl Acad Sci USA 106(13):5224–5228. doi: 10.1073/pnas.0807047106 CrossRefGoogle Scholar
  142. 142.
    Pusey PN (2002) Introduction to scattering experiments. Scattering methods applied to soft condensed matter, Neutrons, X-rays and light, pp 3–21Google Scholar
  143. 143.
    Reiche I, Favre-Quattropani L, Vignaud C, Bocherens H, Charlet L, Menu M (2003) A multi-analytical study of bone diagenesis: the Neolithic site of Bercy (Paris, France). Meas Sci Technol 14(9):1608CrossRefGoogle Scholar
  144. 144.
    Reiche I, Lebon M, Chadefaux C, Müller K, Le Hô AS, Gensch M, Schade U (2010) Microscale imaging of the preservation state of 5,000-year-old archaeological bones by synchrotron infrared microspectroscopy. Anal Bioanal Chem 397(6):2491–2499. doi: 10.1007/s00216-010-3795-4 CrossRefGoogle Scholar
  145. 145.
    Riekel C, Burghammer M, Müller M (2000) Microbeam small-angle scattering experiments and their combination with microdiffraction. J Appl Cryst 33(3):421–423. doi: 10.1107/S0021889899014375 CrossRefGoogle Scholar
  146. 146.
    Robin N, Bernard S, Miot J, Blanc-Valleron MM, Charbonnier S, Petit G (2015) Calcification and diagenesis of bacterial colonies. Minerals 5(3):488–506CrossRefGoogle Scholar
  147. 147.
    Rodenburg JM, Hurst AC, Cullis AG (2007) Transmission microscopy without lenses for objects of unlimited size. Ultramicroscopy 107(2–3):227–31. doi: 10.1016/j.ultramic.2006.07.007 CrossRefGoogle Scholar
  148. 148.
    Rogers K, Daniels P (2002) An X-ray diffraction study of the effects of heat treatment on bone mineral microstructure. Biomaterials 23(12):2577–2585CrossRefGoogle Scholar
  149. 149.
    Rorimer JJ (1931) Ultra-violet rays and their use in the examination of works of art. Metropolitan Museum of Art, New-York, USAGoogle Scholar
  150. 150.
    Rouchon V, Bernard S (2015) Mapping iron gall ink penetration within paper fibres using scanning transmission X-ray microscopy. J Anal At Spectrom 30(3):635–641. doi: 10.1039/C4JA00358F CrossRefGoogle Scholar
  151. 151.
    Rousseau ME, Hernández Cruz D, West MM, Hitchcock AP, Pézolet M (2007) Nephila clavipes spider dragline silk microstructure studied by scanning transmission X-ray microscopy. J Am Chem Soc 129(13):3897–3905CrossRefGoogle Scholar
  152. 152.
    Ryan C, Kirkham R, Hough R, Moorhead G, Siddons D, de Jonge M, Paterson D, Geronimo GD, Howard D, Cleverley J (2010) Elemental X-ray imaging using the Maia detector array: the benefits and challenges of large solid-angle. Nucl Instrum Meth A 619(1–3):37–43. doi: 10.1016/j.nima.2009.11.035 CrossRefGoogle Scholar
  153. 153.
    Ryan C, Siddons D, Kirkham R, Li Z, de Jonge M, Paterson D, Kuczewski A, Howard D, Dunn P, Falkenberg G et al (2014) Maia X-ray fluorescence imaging: capturing detail in complex natural samples. In: 499 (ed) J Phys Conf Ser 1:012002. IOP PublishingGoogle Scholar
  154. 154.
    Sadeghi B, Bergmann U (2010) The codex of a companion of the prophet and the qurān of the prophet. Arabica 57:343–436CrossRefGoogle Scholar
  155. 155.
    Sanchez S, Ahlberg PE, Trinajstic KM, Mirone A, Tafforeau P (2012) Three-dimensional synchrotron virtual paleohistology: a new insight into the world of fossil bone microstructures. Microsc Microanal 18(05):1095–1105CrossRefGoogle Scholar
  156. 156.
    Scherf H (2013) Computed tomography in paleoanthropology—an overview. Archaeol Anthropol Sci 5(3):205–214. doi: 10.1007/s12520-013-0128-5 CrossRefGoogle Scholar
  157. 157.
    Schreiner M, Frühmann B, Jembrih-Simbürger D, Linke R (2004) X-rays in art and archaeology: an overview. Powder Diff 19(1):3–11. doi: 10.1154/1.1649963 CrossRefGoogle Scholar
  158. 158.
    Schroer CG, Kurapova O, Patommel J, Boye P, Feldkamp J, Lengeler B, Burghammer M, Riekel C, Vincze L, van der Hart A et al (2005) Hard x-ray nanoprobe based on refractive X-ray lenses. Appl Phys Lett 87(12):124,103CrossRefGoogle Scholar
  159. 159.
    Sciau P, Goudeau P, Tamura N, Dooryhée É (2006) Micro scanning X-ray diffraction study of Gallo-Roman Terra Sigillata ceramics. Appl Phys A 83(2):219–224. doi: 10.1007/s00339-006-3512-5 CrossRefGoogle Scholar
  160. 160.
    Sciau P, Leon Y, Goudeau P, Fakra SC, Webb S, Mehta A (2011) Reverse engineering the ancient ceramic technology based on X-ray fluorescence spectromicroscopy. J Anal At. Spectrom 26(5):969–976CrossRefGoogle Scholar
  161. 161.
    Sciau P, Relaix S, Mirguet C, Goudeau P, Bell AMT, Jones RL, Pantos E (2008) Synchrotron X-ray diffraction study of phase transformations in illitic clays to extract information on sigillata manufacturing processes. Appl Phys A 90(1):61–66. doi: 10.1007/s00339-007-4249-5 CrossRefGoogle Scholar
  162. 162.
    Sciau P, Relaix S, Roucau C, Kihn Y, Chabanne D (2006) Microstructural and microchemical characterization of Roman period Terra sigillate slips from archaeological sites in Southern France. J Am Ceram Soc 89(3):1053–1058. doi: 10.1111/j.1551-2916.2005.00827.x CrossRefGoogle Scholar
  163. 163.
    Shahack-Gross R, Bar-Yosef O, Weiner S (1997) Black-coloured bones in hayonim cave, israel: differentiating between burning and oxide staining. J Archaeol Sci 24(5):439–446CrossRefGoogle Scholar
  164. 164.
    Shipman P, Foster G, Schoeninger M (1984) Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage. J Archaeol Sci 11(4):307–325CrossRefGoogle Scholar
  165. 165.
    Smith SY, Collinson ME, Rudall PJ, Simpson DA, Marone F, Stampanoni M (2009) Virtual taphonomy using synchrotron tomographic microscopy reveals cryptic features and internal structure of modern and fossil plants. Proc Natl Acad Sci USA 106(29):12013–12018CrossRefGoogle Scholar
  166. 166.
    Smith TM, Tafforeau P, Le Cabec A, Bonnin A, Houssaye A, Pouech J, Moggi-Cecchi J, Manthi F, Ward C, Makaremi M et al (2015) Dental ontogeny in pliocene and early pleistocene hominins. PLoS One 10:e0118,118CrossRefGoogle Scholar
  167. 167.
    Snigirev A, Snigireva I, Kohn V, Kuznetsov S, Schelokov I (1995) On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev Sci Instrum 66(12):5486–5492CrossRefGoogle Scholar
  168. 168.
    Solomon D, Lehmann J, Kinyangi J, Liang B, Heymann K, Dathe L, Hanley K, Wirick S, Jacobsen C (2009) Carbon (1s) NEXAFS spectroscopy of biogeochemically relevant reference. Soil Sci Soc Am J 73(6):1817–1830CrossRefGoogle Scholar
  169. 169.
    Spalla O (2002) General theorems in small-angle scattering. Neutrons, X-rays and light: scattering methods applied to soft condensed matter. Lindner and Zemb, North-Holland, Elsevier editionGoogle Scholar
  170. 170.
    Stampanoni M, Groso A, Isenegger A, Mikuljan G, Chen Q, Bertrand A, Henein S, Betemps R, Frommherz U, Böhler P, Meister D, Lange M, Abela R (2006) Trends in synchrotron-based tomographic imaging: the SLS experience. In: Bonse U (ed) Developments in X-ray tomography V, Proceedings of SPIE, vol 6318, p 63180M. SPIE. doi: 10.1117/12.679497
  171. 171.
    Stiner MC, Kuhn SL, Weiner S, Bar-Yosef O (1995) Differential burning, recrystallization, and fragmentation of archaeological bone. J Archaeol Sci 22(2):223–237CrossRefGoogle Scholar
  172. 172.
    Strullu-Derrien C, Kenrick P, Tafforeau P, Cochard H, Bonnemain JL, Le Hérissé A, Lardeux H, Badel E (2014) The earliest wood and its hydraulic properties documented in c. 407-million-year-old fossils using synchrotron microtomography. Bot J Linn Soc 175(3):423–437CrossRefGoogle Scholar
  173. 173.
    Sutton MD (2008) Tomographic techniques for the study of exceptionally preserved fossils. Proc Roy S B 275(1643):1587–1593CrossRefGoogle Scholar
  174. 174.
    Tafforeau P, Boistel R, Boller E, Bravin A, Brunet M, Chaimanee Y, Cloetens P, Feist M, Hoszowska J, Jaeger JJ, Kay RF, Lazzari V, Marivaux L, Nel A, Nemoz C, Thibault X, Vignaud P, Zabler S (2006) Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Appl Phys A 83(2):195–202. doi: 10.1007/s00339-006-3507-2 CrossRefGoogle Scholar
  175. 175.
    Tafforeau P, Smith TM (2008) Nondestructive imaging of hominoid dental microstructure using phase contrast X-ray synchrotron microtomography. J Human Evol 54(2):272–278. doi: 10.1016/j.jhevol.2007.09.018 CrossRefGoogle Scholar
  176. 176.
    Tamura N, Celestre R, MacDowell A, Padmore H, Spolenak R, Valek B, Chang NM, Manceau A, Patel J (2002) Submicron X-ray diffraction and its applications to problems in materials and environmental science. Rev Sci Instrum 73(3):1369–1372CrossRefGoogle Scholar
  177. 177.
    Tamura N, Kunz M, Chen K, Celestre R, MacDowell A, Warwick T (2009) A superbend X-ray microdiffraction beamline at the advanced light source. Mater Sci Eng A 524(1):28–32CrossRefGoogle Scholar
  178. 178.
    Tamura N, MacDowell AA, Spolenak R, Valek BC, Bravman JC, Brown WL, Celestre RS, Padmore HA, Batterman BW, Patel JR (2003) Scanning X-ray microdiffraction with submicrometer white beam for strain/stress and orientation mapping in thin films. J Synchrotron Rad 10(2):137–143. doi: 10.1107/S0909049502021362 CrossRefGoogle Scholar
  179. 179.
    Thoury M, Echard JP, Réfrégiers M, Berrie B, Nevin A, Jamme F, Bertrand L (2011) Synchrotron UV-visible multispectral luminescence micro-imaging of historical samples. Anal Chem 83(5):1737–1745. doi: 10.1021/ac102986h CrossRefGoogle Scholar
  180. 180.
    Wagermaier W, Gourrier A, Aichmayer B (2013) Understanding hierarchy and functions of bone using scanning X-ray scattering methods. In: Materials design inspired by nature: function through inner architecture, pp 46–73. RSCGoogle Scholar
  181. 181.
    Wang Y, Jacobsen C, Maser J, Osanna A (2000) Soft X-ray microscopy with a cryo scanning transmission X-ray microscope: II. Tomography. J Microsc 197(1):80–93. doi: 10.1046/j.1365-2818.2000.00629.x CrossRefGoogle Scholar
  182. 182.
    Weitkamp T, Diaz A, David C, Pfeiffer F, Stampanoni M, Cloetens P, Ziegler E (2005) X-ray phase imaging with a grating interferometer. Opt Exp 13(16):6296–6304CrossRefGoogle Scholar
  183. 183.
    Weymouth JW (1973) X-ray diffraction analysis of prehistoric pottery. Am Antiq 38(3):339–344CrossRefGoogle Scholar
  184. 184.
    Willneff E, Ormsby B, Stevens J, Jaye C, Fischer D, Schroeder S (2014) Conservation of artists’ acrylic emulsion paints: XPS, NEXAFS and ATR-FTIR studies of wet cleaning methods. Surf Interface Anal 46(10–11):776–780CrossRefGoogle Scholar
  185. 185.
    Wogelius RA, Manning PL, Barden HE, Edwards NP, Webb SM, Sellers WI, Taylor KG, Larson PL, Dodson P, You H, Da-qing L, Bergmann U (2011) Trace metals as biomarkers for eumelanin pigment in the fossil record. Science 333(6049):1622–1626. doi: 10.1126/science.1205748.
  186. 186.
    Young ML (2012) Archaeometallurgy using synchrotron radiation: a review. Rep Prog Phys 75(3):036,504. doi: 10.1088/0034-4885/75/3/036504 CrossRefGoogle Scholar
  187. 187.
    Zazzo A, Balasse M, Patterson WP (2006) The reconstruction of mammal individual history: refining high-resolution isotope record in bovine tooth dentine. J Archaeol Sci 33(8):1177–1187CrossRefGoogle Scholar
  188. 188.
    Zazzo A, Lebon M, Quiles A, Reiche I, Vigne JD (2015) Direct dating and physico-chemical analyses cast doubts on the coexistence of humans and dwarf hippos in cyprus. PloS One 10(8):e0134,429CrossRefGoogle Scholar
  189. 189.
    Zhou H, Burger C, Sics I, Hsiao BS, Chu B, Graham L, Glimcher MJ (2007) Small-angle X-ray study of the three-dimensional collagen/mineral superstructure in intramuscular fish bone. Applied crystallographyGoogle Scholar
  190. 190.
    Ziv V, Weiner S (1994) Bone crystal sizes: a comparison of transmission electron microscopic and X-ray diffraction line width broadening techniques. Connect Rissue Res 30(3):165–175CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Loïc Bertrand
    • 1
    • 2
    Email author
  • Sylvain Bernard
    • 3
  • Federica Marone
    • 4
  • Mathieu Thoury
    • 1
    • 2
  • Ina Reiche
    • 5
    • 6
  • Aurélien Gourrier
    • 7
    • 8
    • 9
  • Philippe Sciau
    • 10
  • Uwe Bergmann
    • 11
  1. 1.IPANEMA, CNRS, Ministère de la Culture et de la Communication, Université Paris-SaclayGif-sur-YvetteFrance
  2. 2.Synchrotron SOLEILGif-sur-YvetteFrance
  3. 3.IMPMC, CNRS UMR 7590, Sorbonne Universités, MNHN, UPMC, IRD UMR 206ParisFrance
  4. 4.Swiss Light SourcePaul Scherrer InstitutVilligenSwitzerland
  5. 5.Rathgen-Forschungslabor, Staatliche Museen zu Berlin-Stiftung Preußischer KulturbesitzBerlinGermany
  6. 6.Sorbonne Universités, UPMC University Paris 06, CNRS, UMR 8220Laboratoire d’archéologie moléculaire et structurale (LAMS)ParisFrance
  7. 7.Université Grenoble AlpesLIPHYGrenobleFrance
  8. 8.CNRSLIPHYGrenobleFrance
  9. 9.European Synchrotron Radiation FacilityGrenoble CedexFrance
  10. 10.CEMES, CNRS UPR 8011Université de ToulouseToulouseFrance
  11. 11.Stanford PULSE Institute, SLAC National Accelerator LaboratoryMenlo ParkUSA

Personalised recommendations