Advertisement

Easy-Mention: a model-driven mention recommendation heuristic to boost your tweet popularity

  • Soumajit Pramanik
  • Mohit Sharma
  • Maximilien Danisch
  • Qinna Wang
  • Jean-Loup Guillaume
  • Bivas Mitra
Regular Paper
  • 227 Downloads

Abstract

This paper investigates the role of mentions on tweet propagation. We propose a novel tweet propagation model \(\mathrm{SIR}_{\mathrm{MF}}\) based on a multiplex network framework which allows to analyze the effects of mentioning on final retweet count. The basic bricks of this model are supported by a comprehensive study of multiple real datasets, and simulations of the model show a nice agreement with the empirically observed tweet popularity. Studies and experiments also reveal that follower count, retweet rate and profile similarity are important factors for gaining tweet popularity and allow to better understand the impact of the mention strategies on the retweet count. Interestingly, we experimentally identify a critical retweet rate regulating the role of mention on the tweet popularity. Finally, our data-driven simulations demonstrate that the proposed mention recommendation heuristic Easy-Mention outperforms the benchmark Whom-To-Mention algorithm.

Keywords

Mention recommendation Multiplex networks Information diffusion 

Notes

Acknowledgements

We thank the anonymous reviewer for providing insightful comments and suggestions to improve the quality of our manuscript. This work has been partially supported by the SAP Labs India Doctoral Fellowship program, DST - CNRS funded Indo - French collaborative project ‘Evolving Communities and Information Spreading’ and French National Research Agency contract CODDDE ANR-13-CORD-0017-01.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Abdullah, S., Wu, X.: An epidemic model for news spreading on twitter. In: 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence, pp. 163–169 (2011)Google Scholar
  2. 2.
    Bakshy, E., Hofman, J.M., Mason, W.A., Watts, D.J.: Everyone’s an influencer: quantifying influence on twitter. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, ACM, pp. 65–74 (2011a)Google Scholar
  3. 3.
    Bakshy, E., Hofman, J.M., Mason, W.A., Watts, D.J.: Identifying influencers on twitter. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining (WSDM) (2011b)Google Scholar
  4. 4.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Barabási, A.L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., Vicsek, T.: Evolution of the social network of scientific collaborations. Physica A Stat. Mech. Appl. 311(3), 590–614 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Benevenuto, F., Magno, G., Rodrigues, T., Almeida, V.: Detecting spammers on twitter. In: Collaboration, Electronic Messaging, Anti-abuse and Spam Conference (CEAS), vol. 6, p. 12 (2010)Google Scholar
  7. 7.
    Bhowmick, A.K., Gueuning, M., Delvenne, J.C., Lambiotte, R., Mitra. B.: Temporal pattern of (re)tweets reveal cascade migration. In: 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (2017)Google Scholar
  8. 8.
    Bock, R.D., Aitkin, M.: Marginal maximum likelihood estimation of item parameters: application of an EM algorithm. Psychometrika 46(4), 443–459 (1981)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Borge-Holthoefer, J., Rivero, A., Moreno, Y.: Locating privileged spreaders on an online social network. Phys. Rev. E 85(6), 066,123 (2012)CrossRefGoogle Scholar
  10. 10.
    Cha, M., Haddadi, H., Benevenuto, F., Gummadi, P.K.: Measuring user influence in twitter: the million follower fallacy. In: Proceedings of the 4th International AAAI Conference on Weblogs and Social Media (ICWSM), vol. 10, p. 30 (2010)Google Scholar
  11. 11.
    Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 199–208 (2009)Google Scholar
  12. 12.
    Dezső, Z., Barabási, A.L.: Halting viruses in scale-free networks. Phys. Rev. E 65(5), 055,103 (2002)CrossRefGoogle Scholar
  13. 13.
    Dickens, L., Molloy, I., Lobo, J., Cheng, P.C., Russo, A.: Learning stochastic models of information flow. In: Proceedings of the 28th IEEE International Conference on Data Engineering (ICDE), pp. 570–581 (2012)Google Scholar
  14. 14.
    Freitas, C.A., Benevenuto, F., Ghosh, S., Veloso, A.: Reverse engineering socialbot infiltration strategies in twitter. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, (ASONAM), pp. 25–32 (2015)Google Scholar
  15. 15.
    Galuba, W., Aberer, K., Chakraborty, D., Despotovic, Z., Kellerer, W.: Outtweeting the twitterrs—predicting information cascades in microblogs. In: Proceedings of the 3rd Conference on Online Social Networks (WOSN), pp. 3–11 (2010)Google Scholar
  16. 16.
    Goldenberg, J., Libai, B., Muller, E.: Talk of the network: a complex systems look at the underlying process of word-of-mouth. Mark. Lett. 12(3), 211–223 (2001)CrossRefGoogle Scholar
  17. 17.
    Gomez-Rodriguez, M., Balduzzi, D., Schölkopf, B.: Uncovering the temporal dynamics of diffusion networks. In: Proceedings of the 28th International Conference on Machine Learning (ICML), pp. 561–568 (2011)Google Scholar
  18. 18.
    Gong, Y., Zhang, Q., Sun, X., Huang, X.: Who will you "@"? In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management (CIKM), pp. 533–542 (2015)Google Scholar
  19. 19.
    González-Bailón, S., Borge-Holthoefer, J., Rivero, A., Moreno, Y.: The dynamics of protest recruitment through an online network. Sci. Rep. 1, 197 (2011)CrossRefGoogle Scholar
  20. 20.
    Granell, C., Gómez, S.: Dynamical interplay between awareness and epidemic spreading in multiplex networks. Phys. Rev. Lett. 111(12), 128,701 (2013)CrossRefGoogle Scholar
  21. 21.
    Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)CrossRefGoogle Scholar
  22. 22.
    Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Howard, P.N., Duffy, A., Freelon, D., Hussain, M.M., Mari, W., Mazaid, M.: Opening closed regimes: what was the role of social media during the Arab spring? Available at SSRN 2595096 (2011)Google Scholar
  24. 24.
    Jin, F., Dougherty, E., Saraf, P., Cao, Y., Ramakrishnan, N.: Epidemiological modeling of news and rumors on twitter. In: Proceedings of the 7th Workshop on Social Network Mining and Analysis, ACM, SNAKDD ’13, pp. 8:1–8:9 (2013)Google Scholar
  25. 25.
    Jin, Y., Wang, W., Xiao, S.: An sirs model with a nonlinear incidence rate. Chaos Solitons Fractals 34(5), 1482–1497 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kato, S., Koide, A., Fushimi, T., Saito, K., Motoda, H.: Network analysis of three twitter functions: favorite, follow and mention. In: Richards, D., Kang, B. (eds.) Knowledge Management and Acquisition for Intelligent Systems. Lecture Notes in Computer Science, vol. 7457, pp. 298–312. Springer, Berlin (2012)CrossRefGoogle Scholar
  27. 27.
    Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)Google Scholar
  28. 28.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news media? In: Proceedings of the 19th ACM International Conference on World Wide Web (WWW), pp. 591–600 (2010)Google Scholar
  29. 29.
    Kywe, S.M., Hoang, T.A., Lim, E.P., Zhu, F.: On recommending hashtags in twitter networks. In: Aberer, K., Flache, A., Jager, W., Liu, L., Tang, J., Guéret, C. (eds.) Social Informatics, vol. 7710, pp. 337–350. Springer, Berlin (2012)Google Scholar
  30. 30.
    Lee, K., Mahmud, J., Chen, J., Zhou, M., Nichols, J.: Who will retweet this? detecting strangers from twitter to retweet information. In: Proceedings of the 19th ACM International Conference on Intelligent User Interfaces (IUI), pp. 247–256 (2014)Google Scholar
  31. 31.
    Lerman, K., Ghosh, R.: Information contagion: an empirical study of the spread of news on digg and twitter social networks. In: Proceedings of the 5th International AAAI Conference on Weblogs and Social Media (ICWSM), vol. 10, pp. 90–97 (2010)Google Scholar
  32. 32.
    Leskovec, J., McGlohon, M., Faloutsos, C., Glance, N., Hurst. M.: Patterns of cascading behavior in large blog graphs. In: Proceedings of the 2007 SIAM International Conference on Data Mining, SIAM, pp. 551–556 (2007)Google Scholar
  33. 33.
    Li, M., Wang, X., Gao, K., Zhang, S.: A survey on information diffusion in online social networks: models and methods. Information 8(4), 118 (2017)CrossRefGoogle Scholar
  34. 34.
    Li, Q., Song, D., Liao, L., Liu, L.: Personalized mention probabilistic ranking—recommendation on mention behavior of heterogeneous social network. In: Web-Age Information Management: WAIM 2015 International Workshops: HENA, HRSUNE pp. 41–52 (2015)Google Scholar
  35. 35.
    Li, Y., Feng, Z., Wang, H., Kong, S., Feng, L.: Retweet P: Modeling and predicting tweets spread using an extended susceptible-infected-susceptible epidemic model. In: Proceedings of the 18th International Conference on Database Systems for Advanced Applications (DASFAA), pp 454–457. Springer, Berlin (2013)Google Scholar
  36. 36.
    Malhotra, A., Malhotra, C.K., See, A.: How to get your messages retweeted. MIT Sloan Manag. Rev. 53(2), 61–66 (2012)Google Scholar
  37. 37.
    McCluskey, C.C.: Complete global stability for an sir epidemic model with delaydistributed or discrete. Nonlinear Anal. Real World Appl. 11(1), 55–59 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Newman, M.E.: Spread of epidemic disease on networks. Phys. Rev. E 66(1), 016,128 (2002)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Petrovic, S., Osborne, M., Lavrenko, V.: Rt to win! predicting message propagation in twitter. In: Proceedings of the 5th International AAAI Conference on Weblogs and Social Media (ICWSM), pp. 586–589 (2011)Google Scholar
  40. 40.
    Pramanik, S., Wang, Q., Danisch, M., Bandi, S., Kumar, A., Guillaume, J.L., Mitra, B.: On the role of mentions on tweet virality. In: Proceedings of the 4th IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 204–213 (2016)Google Scholar
  41. 41.
    Saito, K., Nakano, R., Kimura, M.: Prediction of information diffusion probabilities for independent cascade model. In: Proceedings of the 12th International Conference on Knowledge-Based Intelligent Information and Engineering Systems (KES), Part III, pp. 67–75 (2008)Google Scholar
  42. 42.
    Suh, B., Hong, L., Pirolli, P., Chi, E.H.: Want to be retweeted? large scale analytics on factors impacting retweet in twitter network. In: 2010 IEEE Second International Conference on Social computing (SocialCom), pp. 177–184 (2010)Google Scholar
  43. 43.
    Tang, L., Ni, Z., Xiong, H., Zhu, H.: Locating targets through mention in twitter. World Wide Web 18, 1–31 (2014)Google Scholar
  44. 44.
    Uysal, I., Croft, W.B.: User oriented tweet ranking: a filtering approach to microblogs. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management (CIKM), pp. 2261–2264 (2011)Google Scholar
  45. 45.
    Wang, B., Wang, C., Bu, J., Chen, C., Zhang, W.V., Cai, D., He, X.: Whom to mention: expand the diffusion of tweets by @ recommendation on micro-blogging systems. In: Proceedings of the 22nd International Conference on World Wide Web (WWW), pp. 1331–1340 (2013)Google Scholar
  46. 46.
    Weng, L., Flammini, A., Vespignani, A., Menczer, F.: Competition among memes in a world with limited attention. Sci. Rep. 2, 335 (2012)CrossRefGoogle Scholar
  47. 47.
    Yagan, O., Qian, D., Zhang, J., Cochran, D.: Conjoining speeds up information diffusion in overlaying social–physical networks. IEEE J. Select. Areas Commun. 31(6), 1038–1048 (2013)CrossRefGoogle Scholar
  48. 48.
    Zaman, T.R., Herbrich, R., Van Gael, J., Stern, D.: Predicting information spreading in twitter. In: Workshop on Computational Social Science and the Wisdom of Crowds. Neural Information Processing Systems (NIPS) vol. 104, pp. 17 (2010)Google Scholar
  49. 49.
    Zhao, Q., Erdogdu, M.A., He, H.Y., Rajaraman, A., Leskovec, J: Seismic: A self-exciting point process model for predicting tweet popularity. In: Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1513–1522 (2015)Google Scholar
  50. 50.
    Zhou, G., Yu, L., Zhang, C.X., Liu, C., Zhang, Z.K., Zhang, J.: A novel approach for generating personalized mention list on micro-blogging system. In: 2015 IEEE International Conference on Data Mining Workshop (ICDMW), pp. 1368–1374 (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Sorbonne Universités, UPMC Univ Paris 06, CNRSParisFrance
  3. 3.L3I, University of La RochelleLa RochelleFrance

Personalised recommendations