Advertisement

Evaluation of service-life prediction model for reinforced concrete structures in chloride-laden environments

  • L. SilvestroEmail author
  • J. J. O. Andrade
  • D. C. C. Dal Molin
Research Article
  • 108 Downloads
Part of the following topical collections:
  1. Building Pathology: Diagnosis and Intervention

Abstract

Reinforced concrete structures are subjected to several degradation processes that often occur early, especially due to reinforcements corrosion. Therefore, the use of representative models for an accurate service-life prediction of reinforced concrete structures becomes indispensable. Thus, this study is aimed at evaluating the model proposed by Andrade to efficiently predict the chloride penetration in concrete structures. In addition, the input variables of this model, as well as the challenges in obtaining them are analyzed. Andrade’s model was applied in some case studies to verify their efficiency in predicting the chloride penetration in reinforced concrete structures in marine environments. The results indicate that for data with small exposure times, the model yielded similar responses to the chloride penetration in situ, with good results within an error range of 35%, associated with a maximum difference of only 4.6 mm between observed and calculated values. For the data with higher exposure times, the differences were significant, indicating the need for an alteration in order to best determine the increase in surface chloride concentration over time. Thus, it is suggested that the model undergoes modifications, mainly in relation to two fundamental aspects, (i) adopt the growth of the chloride surface concentration over time and (ii) consider the variability of the concrete characteristics and exposure conditions through a probabilistic approach.

Keywords

Concrete Service-life prediction Chloride penetration Modeling 

Notes

Acknowledgements

Funding was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico.

References

  1. 1.
    Shi X, Xie N, Fortune K, Gong J (2012) Durability of steel reinforced concrete in chloride environments: an overview. Constr Build Mater 30:125–138.  https://doi.org/10.1016/j.conbuildmat.2011.12.038 CrossRefGoogle Scholar
  2. 2.
    American Concrete Institute (2016) Manual of concrete practiceGoogle Scholar
  3. 3.
    Apostolopoulos CA, Papadakis VG (2008) Consequences of steel corrosion on the ductility properties of reinforcement bar. Constr Build Mater 22(12):2316–2324.  https://doi.org/10.1016/j.conbuildmat.2007.10.006 CrossRefGoogle Scholar
  4. 4.
    Mehta PK, Monteiro PJ (2014) Concrete: microstructures, properties, and materials. McGraw-Hill, New YorkGoogle Scholar
  5. 5.
    Ueda T, Takewaka K (2007) Performance-based Standard Specifications for maintenance and Repair of concrete structures in Japan. Struct Eng Int 4:359–366.  https://doi.org/10.2749/101686607782359119 CrossRefGoogle Scholar
  6. 6.
    Gerhardus MPH, Koch H, Brongers NG (2002) Corrosion costs and preventive strategies in the United States. Summ. Shute. Inst., pp 1–12Google Scholar
  7. 7.
    Fédération Internationale du Béton (2006) Boletim FIB 34Google Scholar
  8. 8.
    European Committee for Standardization (2005) EN 1990:2002/A1:2005: Eurocode—basis of structural designGoogle Scholar
  9. 9.
    Australian Standard (2005) AS 4997—guidelines for the design of maritime structuresGoogle Scholar
  10. 10.
    Associação Brasileira de Normas Técnicas (2013) NBR 15575-1: Edificações habitacionais—Desempenho. Parte 1: Requisitos geraisGoogle Scholar
  11. 11.
    Milani CJ, Kripka M (2012) Diagnosis of pathologies in bridges of the road system in Brazil. Constr J 13(1):26–34Google Scholar
  12. 12.
    Muthulingam BN, Rao S (2015) Consistent models for estimating chloride ingress parameters in fly ash concrete. J Build Eng 3:24–38.  https://doi.org/10.1016/j.jobe.2015.04.009 CrossRefGoogle Scholar
  13. 13.
    Pintan NM, Just A, Maria C, Silva M (2015) Pathological manifestations and the study of corrosion present on bridges of the city of Recife. EJGE 20:11893–11907Google Scholar
  14. 14.
    Weerdt K, Orsáková D, Müller ACA, Larsen CK, Pedersen B, Geiker MR (2016) Towards the understanding of chloride profiles in marine exposed concrete, impact of leaching and moisture content. Constr Build Mater 120:418–431.  https://doi.org/10.1016/j.conbuildmat.2016.05.069 CrossRefGoogle Scholar
  15. 15.
    Ribeiro DV (2014) Corrosão em estruturas de concreto armado: Teoria, Controle e Métodos de AnáliseGoogle Scholar
  16. 16.
    Shodja HM, Kiani K, Hashemian A (2010) A model for the evolution of concrete deterioration due to reinforcement corrosion. Math Comput Model 52(9–10):1403–1422.  https://doi.org/10.1016/j.mcm.2010.05.023 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    IBGE (2019) Sobre o Brasil—Posição e ExtensãoGoogle Scholar
  18. 18.
    Torres-Acosta AA, Navarro-Gutierrez N, Terán-Guillén J (2007) Residual flexure capacity of corroded reinforced concrete beams. Eng Struct 29(6):1145–1152.  https://doi.org/10.1016/j.engstruct.2006.07.018 CrossRefGoogle Scholar
  19. 19.
    Spiesz P, Brouwers HJH (2013) The apparent and effective chloride migration coef fi cients obtained in migration tests. Cem Concr Res 48:116–127.  https://doi.org/10.1016/j.cemconres.2013.02.005 CrossRefGoogle Scholar
  20. 20.
    Otieno M, Beushausen H, Alexander M (2014) Effect of chemical composition of slag on chloride penetration resistance of concrete. Cem Concr Compos 46:56–64.  https://doi.org/10.1016/j.cemconcomp.2013.11.003 CrossRefGoogle Scholar
  21. 21.
    Pruckner F, Gjørv OE (2004) Effect of CaCl2 and NaCl additions on concrete corrosivity. Cem Concr Res 34(7):1209–1217.  https://doi.org/10.1016/j.cemconres.2003.12.015 CrossRefGoogle Scholar
  22. 22.
    Xu J, Jiang L, Wang W, Jiang Y (2011) Influence of CaCl2 and NaCl from different sources on chloride threshold value for the corrosion of steel reinforcement in concrete. Constr Build Mater 25(2):663–669.  https://doi.org/10.1016/j.conbuildmat.2010.07.023 CrossRefGoogle Scholar
  23. 23.
    Liu J, Ba M, Du Y, He Z, Chen J (2016) Effects of chloride ions on carbonation rate of hardened cement paste by X-ray CT techniques. Constr Build Mater 122:619–627.  https://doi.org/10.1016/j.conbuildmat.2016.06.101 CrossRefGoogle Scholar
  24. 24.
    Chalee W, Jaturapitakkul C, Chindaprasirt PP (2009) Predicting the chloride penetration of fly ash concrete in seawater. Mar Struct 22(3):341–353.  https://doi.org/10.1016/j.marstruc.2008.12.001 CrossRefGoogle Scholar
  25. 25.
    Valipour M, Pargar F, Shekarchi M, Khani S, Moradian M (2013) In situ study of chloride ingress in concretes containing natural zeolite, metakaolin and silica fume exposed to various exposure conditions in a harsh marine environment. Constr Build Mater 46:63–70CrossRefGoogle Scholar
  26. 26.
    Dasar A, Hamada H, Sagawa Y, Yamamoto D (2017) Deterioration progress and performance reduction 40-year-old reinforced concrete beams in natural corrosion environments. Constr Build Mater 149:690–704.  https://doi.org/10.1016/j.conbuildmat.2017.05.162 CrossRefGoogle Scholar
  27. 27.
    Maric MK, Ozbolt J, Balabanic G, Ivankovic AM, Zaric D (2017) Service life prediction of concrete structures in maritime environment—case study: Maslenica motorway bridge. In: Construction materials for sustainable future, pp 0–10Google Scholar
  28. 28.
    Tuutti K (1982) Corrosion of steel in concrete. Swedish Cement and Concrete Research InstituteGoogle Scholar
  29. 29.
    Uji T, Matsuoka K, Maruya Y (1990) Formulation of an equation for surface chloride content of concrete due to permeation of chloride. In 3rd Int. Symp. on Corrosion of Reinforced Concrete, Society of Chemical Industry, pp 258–267Google Scholar
  30. 30.
    Tang LO, Nilsson A (1996) A numerical method for prediction of chloride penetration into concrete structures. In: The modelling of microestruture and it’s potential for studying transport properties and durability, pp 539–552CrossRefGoogle Scholar
  31. 31.
    Bob C (1996) Probabilistic assessment of reinforcement corrosion in existing structures. In: Concrete repair, rehabilitation and protection, pp 17–28Google Scholar
  32. 32.
    Sugiyama T, Ritthichauy W, Tsuji Y (2008) Experimental investigation and numerical modeling of chloride penetration and calcium dissolution in saturated concrete. Cem Concr Res 38:49–67.  https://doi.org/10.1016/j.cemconres.2007.08.027 CrossRefGoogle Scholar
  33. 33.
    Andrade C, Andréa RD, Castillo A, Castellote M (2009) The use of electrical resistivity as NDT method for the specification of the durability of reinforced concrete. Civ Eng 3–8Google Scholar
  34. 34.
    Mazer W (2010) Metodologia para a previsão da penetração de íons cloreto em estruturas de concreto armado utilizado lógica difusa. Instituto Técnico de AeronaúticaGoogle Scholar
  35. 35.
    Marsavina L, Audenaert K, Schutter G, Faur N, Marsavina D (2009) Experimental and numerical determination of the chloride penetration in cracked concrete. Constr Build Mater 23(1):264–274.  https://doi.org/10.1016/j.conbuildmat.2007.12.015 CrossRefGoogle Scholar
  36. 36.
    Du X, Jin K, Ma G (2014) A meso-scale numerical method for the simulation of chloride diffusivity in concrete. Finite Elem Anal Des 85:87–100CrossRefGoogle Scholar
  37. 37.
    Andrade JJO (2001) Contribuição à previsão da vida útil das estruturas de concreto armado atacadas pela corrosão de armaduras: iniciação por cloretos. Universidade Federal do Rio Grande do SulGoogle Scholar
  38. 38.
    Andrade JJO, Possan E, Dal Molin DCC (2019) Considerations about the service life prediction of reinforced concrete structures inserted in chloride environments. J Build Pathol Rehabil 2(1):6CrossRefGoogle Scholar
  39. 39.
    Possan E, Dal Molin DCC, Andrade JJO (2019) A conceptual framework for service life prediction of reinforced concrete structures. J Build Pathol Rehabil 3:2CrossRefGoogle Scholar
  40. 40.
    Silvestro L, Dal Molin DCC (2018) Avaliação de modelos para previsão de vida útil de estruturas de concreto armado localizadas em ambientes com cloretos. In: 6a Conferência sobre Patol. e Reabil. EdifíciosGoogle Scholar
  41. 41.
    Andrade C, Andrea R (2010) Electrical resistivity as microstructural parameter for modelling of service life of reinforced concrete structures. In: 2nd Int. Symp. Serv. Life Des. Infrastructure, Delft, Netherlands, no. October, pp 379–388Google Scholar
  42. 42.
    Medeiros Junior RA (2011) Estudo da influência das mudanças climáticas na penetração de cloretos em estruturas de concreto localizadas em ambiente marinho. Instituto Tecnológico de AeronáuticaGoogle Scholar
  43. 43.
    Crank J (195) The mathematics of diffusionGoogle Scholar
  44. 44.
    Oh BH, Jang SY, Shin YS (2005) Experimental investigation of the threshold chloride concentration for corrosion initiation in reinforced concrete structures. Mag Concr Res 55(2):117–124.  https://doi.org/10.1680/macr.2003.55.2.117 CrossRefGoogle Scholar
  45. 45.
    Yuan Q, Shi C, Schutter G, Audenaert K, Deng D (2009) Chloride binding of cement-based materials subjected to external chloride environment—a review. Constr Build Mater 23(1):1–13.  https://doi.org/10.1016/j.conbuildmat.2008.02.004 CrossRefGoogle Scholar
  46. 46.
    Nielsen EP, Geiker MR (2003) Chloride diffusion in partially saturated cementitious material. Cem Concr Res 33:133–138CrossRefGoogle Scholar
  47. 47.
    Costa A, Appleton J (1999) Chloride penetration into concrete in marine environment—part I: main parameters affecting chloride penetration. Mater Struct 32:252–259CrossRefGoogle Scholar
  48. 48.
    Costa A, Appleton J (1999) Chloride penetration into concrete in marine environment—part II : prediction of long term chloride penetration. Mater Struct 32:354–359CrossRefGoogle Scholar
  49. 49.
    Costa A, Appleton J (2002) Case studies of concrete deterioration in a marine environment in Portugal. Cem Concr Compos 24(1):169–179CrossRefGoogle Scholar
  50. 50.
    Pereira ADC (2003) Estudio De Metodos Probabilisticos Para La Prediccion De La Vida Util De Estructuras De Hormigon: Influencia Del Factor Variabilidad Espacial En El Caso De Plataformas Offshore En Brasil. Universidad Politécnica de MadridGoogle Scholar
  51. 51.
    Brito PC (2008) Avaliação de durabilidade de uma plataforma offshore em concreto—Estudo de microclima em ambiente marinho. Instituto Tecnológico de AeronáuticaGoogle Scholar
  52. 52.
    Meira GR (2004) Agressividade por cloretos em zona de atmosfera marinha frente ao problema da corrosão em estruturas de concreto armado. Universidade Federal de Santa CatarinaGoogle Scholar
  53. 53.
    Vitali MRV (2013) Efeito Do Distanciamento Ao Mar Da Contaminação Do Concreto Por Cloretos. Universidade Federal de Santa CatarinaGoogle Scholar
  54. 54.
    Boubitsas D, Luping T, Utgenannt P (2014) Chloride ingress in concrete exposed to marine environment—field data up to 20 years exposure. ReportGoogle Scholar
  55. 55.
    Wu L, Li W, Yu X (2017) Time-dependent chloride penetration in concrete in marine environments. Constr Build Mater 152:406–413.  https://doi.org/10.1016/j.conbuildmat.2017.07.016 CrossRefGoogle Scholar
  56. 56.
    Medeiros Junior RA, Lima MG, Brito PC, Medeiros MHF (2015) Chloride penetration into concrete in an offshore platform-analysis of exposure conditions. Ocean Eng 103:78–87.  https://doi.org/10.1016/j.oceaneng.2015.04.079 CrossRefGoogle Scholar
  57. 57.
    Chen YS, Chiu HJ, Chan YW, Chang YC, Yang CC (2013) The correlation between air-borne salt and chlorides cumulated on concrete surface in the marine atmosphere zone in North Taiwan. J Mar Sci Technol 21(1):24–34Google Scholar
  58. 58.
    Luping T (2003) Chloride ingress in concrete exposed to marine environment—field data up to 10 years exposure. ReportGoogle Scholar
  59. 59.
    Song HW, Lee CH, Ann KY (2008) Factors influencing chloride transport in concrete structures exposed to marine environments. Cem Concr Compos 30(2):113–121.  https://doi.org/10.1016/j.cemconcomp.2007.09.005 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Federal University of Santa Catarina (UFSC)FlorianópolisBrazil
  2. 2.Graduation Program in Materials Engineering and TechnologyPontifical Catholic University of Rio Grande do Sul (PGETEMA/PUCRS)Porto AlegreBrazil
  3. 3.Counseling Center for Innovation of Buildings from Federal University of Rio Grande do Sul (NORIE/UFRGS)Porto AlegreBrazil

Personalised recommendations