Advertisement

Effect of Recycled PET (Polyethylene Terephthalate) on the Electrochemical Properties of Rebar in Concrete

  • Yohandry Díaz Blanco
  • Elsa Carmina Menchaca Campos
  • Carolin Ivette Rocabruno Valdés
  • Jorge Uruchurtu ChavarínEmail author
Research paper
  • 27 Downloads

Abstract

This research is focused on the use of recycled PET (Polyethylene terephthalate) as an aggregate to improve the electrochemical properties of reinforcing steel in concrete. Samples were made with different PET geometries such as: fibers (F), rectangles (R), and mixture of fiber and rectangle (F–R). The PET was added as a substitute for sand with a PET/sand ratio by volume percent of 3%/97%, 5%/95%, and 8%/92%. Specimens were exposed to an aggressive solution of sodium chloride at 3%, simulating a marine environment, and were evaluated for 300 days through various electrochemical techniques such as: open-circuit potential, electrochemical noise, electrochemical impedance spectroscopy, and linear polarization resistance. Samples with PET reached more noble values of potential compared to the control sample. The highest values of noise resistance (Rn) and polarization resistance (Rp) were reached for the reinforcing steel in concrete samples prepared with particle of rectangles and fiber–rectangle mix. Likewise, these samples maintained a diffusive behavior for a longer time. At the end of the test period, the favorable effect of the rectangles and the mixture of fibers and rectangles in the concrete samples are evident, since they remain in the negligible range of corrosion rate, with values below 1 × 10−1 μA/cm2. This behavior was not noticeable for samples with only PET fibers, due to the fact that they reach the moderate range of corrosion rate, with values between 2 × 10−1 and 5 × 10−1 μA/cm2, similar to the control sample.

Keywords

Reinforcing concrete Recycled PET Electrochemical techniques Localized corrosion 

References

  1. 1.
    Pech-Canul MA, Castro P (2002) Corrosion measurements of steel reinforcement in concrete exposed to a tropical marine atmosphere. Cem Concr Res 32(3):491–498CrossRefGoogle Scholar
  2. 2.
    Morris W, Vico A, Vazquez M, De Sanchez SR (2002) Corrosion of reinforcing steel evaluated by means of concrete resistivity measurements. Corros Sci 44(1):81–99CrossRefGoogle Scholar
  3. 3.
    Trocónis de Rincón O, Sánchez M, Millano V, Fernández R, de Partidas EA, Andrade C, Martínez I, Castellote M, Barboza M, Irassar F, Montenegro JC, Vera R, Carvajal AM, de Gutiérrez RM, Maldonado J, Guerrero C, Saborio-Leiva E, Villalobos AC, Tres-Calvo G, Torres-Acosta A, Pérez-Quiroz J, Martínez-Madrid M, Almeraya Calderón F, Castro-Borges P, Moreno EI, Pérez-López T, Salta M, de Melo AP, Rodríguez G, Pedrón Miguel, Derrégibus M (2007) Effect of the marine environment on reinforced concrete durability in Iberoamerican countries: DURACON project/CYTED. Corros Sci 49(7):2832–2843CrossRefGoogle Scholar
  4. 4.
    Garcés P, Saura P, Méndez A, Zornoza E, Andrade C (2008) Effect of nitrite in corrosion of reinforcing steel in neutral and acid solutions simulating the electrolytic environments of micropores of concrete in the propagation period. Corros Sci 50(2):498–509CrossRefGoogle Scholar
  5. 5.
    Montemor MF, Simões AMP, Ferreira MGS (2003) Chloride-induced corrosion on reinforcing steel: from the fundamentals to the monitoring techniques. Cem Concr Compos 25:491–502CrossRefGoogle Scholar
  6. 6.
    Morozov Y, Castela AS, Dias APS, Montemor MF (2013) Chloride-induced corrosion behavior of reinforcing steel in spent fluid cracking catalyst modified mortars. Cem Concr Res 47:1–7CrossRefGoogle Scholar
  7. 7.
    Duarte RG, Castela AS, Neves R, Freire L, Montemor MF (2014) Corrosion behavior of stainless steel rebars embedded in concrete: an electrochemical impedance spectroscopy study. Electrochim Acta 124:218–224CrossRefGoogle Scholar
  8. 8.
    da Silva FG, Liborio JBL (2006) A study of steel bar reinforcement corrosion in concretes with SF and SRH using electrochemical impedance spectroscopy. Mater Res 9(2):209–215CrossRefGoogle Scholar
  9. 9.
    Neves R, Vicente C, Castela A, Montemor MF (2015) Durability performance of concrete incorporating spent fluid cracking catalyst. Cem Concr Compos 55:308–314CrossRefGoogle Scholar
  10. 10.
    Martínez-Barrera G, Vigueras-Santiago E, Hernández-López S, Martínez-Barrera G, Brostow W, Menchaca-Campos C (2005) Mechanical improvement of concrete by irradiated polypropylene fibers. Polym Eng Sci 45(10):1426–1431CrossRefGoogle Scholar
  11. 11.
    Kim SB, Yi NH, Kim HY, Kim JHJ, Song Y-C (2010) Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cem Concr Compos 32(3):232–240CrossRefGoogle Scholar
  12. 12.
    Shi X, Xie N, Fortune K, Gong J (2012) Durability of steel reinforced concrete in chloride environments: an overview. Constr Build Mater 30:125–138CrossRefGoogle Scholar
  13. 13.
    Siddique R, Khatib J, Kaur I (2008) Use of recycled plastic in concrete: a review. Waste Manag 28(10):1835–1852CrossRefGoogle Scholar
  14. 14.
    Foti D (2013) Use of recycled waste pet bottles fibers for the reinforcement of concrete. Compos Struct 96:396–404CrossRefGoogle Scholar
  15. 15.
    Foti D, Paparella F (2014) Impact behavior of structural elements in concrete reinforced with PET grids. Mech Res Commun 57:57–66CrossRefGoogle Scholar
  16. 16.
    Grzymski F, Musiał M, Trapko T (2019) Mechanical properties of fibre reinforced concrete with recycled fibres. Constr Build Mater 198:323–331CrossRefGoogle Scholar
  17. 17.
    Kim JHJ, Park CG, Lee SW, Lee SW, Won JP (2008) Effects of the geometry of recycled PET fiber reinforcement on shrinkage cracking of cement-based composites. Compo. Part B Eng 39(3):442–450CrossRefGoogle Scholar
  18. 18.
    Nepomuceno AA, Andrade C (2006) Steel protection capacity of polymeric based cement mortars against chloride and carbonation attacks studied using electrochemical polarization resistance. Cem Concr Compos 28:716–721CrossRefGoogle Scholar
  19. 19.
    Kobayashi K, Suzuki M, Dung LA, Yun H, Rokugo K (2018) The effects of PE and PVA fiber and water cement ratio on chloride penetration and rebar corrosion protection performance of cracked SHCC. Constr Build Mater 178:372–383CrossRefGoogle Scholar
  20. 20.
    Mohammed AA (2017) Modelling the mechanical properties of concrete containing PET waste aggregate. Constr Build Mater 150:595–605CrossRefGoogle Scholar
  21. 21.
    Albano C, Camacho N, Hernández M, Matheus A, Gutiérrez A (2009) Influence of content and particle size of waste pet bottles on concrete behavior at different w/c ratios. Waste Manag 29(10):2707–2716CrossRefGoogle Scholar
  22. 22.
    Frigione M (2010) Recycling of PET bottles as fine aggregate in concrete. Waste Manag 30(6):1101–1106CrossRefGoogle Scholar
  23. 23.
    Foti D (2011) Preliminary analysis of concrete reinforced with waste bottles PET fibers. Constr Build Mater 25(4):1906–1915CrossRefGoogle Scholar
  24. 24.
    Pereira EL, de Oliveira Junior AL, Fineza AG (2017) Optimization of mechanical properties in concrete reinforced with fibers from solid urban wastes (PET bottles) for the production of ecological concrete. Constr Build Mater 149:837–848CrossRefGoogle Scholar
  25. 25.
    Choi YW, Moon DJ, Chung JS, Cho SK (2005) Effects of waste PET bottles aggregate on the properties of concrete. Cem Concr Res 35(4):776–781CrossRefGoogle Scholar
  26. 26.
    Díaz Blanco Y, Menchaca Campos C, Rocabruno Valdés CI, Uruchurtu Chavarín J (2019) Natural additive (nopal mucilage) on the electrochemical properties of concrete reinforcing steel. Rev ALCONPAT 9(3):260–276CrossRefGoogle Scholar
  27. 27.
    Zhao B, Li JH, Hu RG, Du RG, Lin CJ (2007) Study on the corrosion behavior of reinforcing steel in cement mortar by electrochemical noise measurements. Electrochim Acta 52(12):3976–3984CrossRefGoogle Scholar
  28. 28.
    Pérez-Quiroz JT, Terán J, Herrera MJ, Martínez M, Genescá J (2008) Assessment of stainless steel reinforcement for concrete structures rehabilitation. J Constr Steel Res 64:1317–1324CrossRefGoogle Scholar
  29. 29.
    Gusmano G, Montesperelli G, Pacetti S, Petitti A, D’Amico A (1997) Electrochemical noise resistance as a tool for corrosion rate prediction. Corrosion 53(11):860–868CrossRefGoogle Scholar
  30. 30.
    Legat A, Leban M, Bajt Ž (2004) Corrosion processes of steel in concrete characterized by means of electrochemical noise. Electrochim Acta 49:2741–2751CrossRefGoogle Scholar
  31. 31.
    Arellano-Pérez JH, Ramos Negrón OJ, Escobar-Jiménez RF, Gómez-Aguilar JF, Uruchurtu-Chavarín J (2018) Development of a portable device for measuring the corrosion rates of metals based on electrochemical noise signals. Measurement 122:73–81CrossRefGoogle Scholar
  32. 32.
    Cottis RA (2001) Interpretation of electrochemical noise data. Corrosion 57(3):265–285CrossRefGoogle Scholar
  33. 33.
    Ribeiro DV, Abrantes JCC (2016) Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: a new approach. Constr Build Mater 111:98–104CrossRefGoogle Scholar
  34. 34.
    Stern M, Geary AL (1957) Electrochemical polarization I. A theoretical analysis of the shape of polarization curves. J Electrochem Soc 104(1):56–63CrossRefGoogle Scholar
  35. 35.
    Andrade C, Keddam M, Nóvoa XR, Pérez MC, Rangel CM, Takenouti H (2001) Electrochemical behaviour of steel rebars in concrete: influence of environmental factors and cement chemistry. Electrochim Acta 46:3905–3912CrossRefGoogle Scholar
  36. 36.
    Andrade C, Alonso C, Gulikers J, Polder R, Cigna R, Vennesland Ø, Salta M, Raharinaivo A, Elsener B (2004) Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method. Mater Struct Constr 37(273):623–643CrossRefGoogle Scholar
  37. 37.
    Andrade C, Alonso C (1996) Corrosion rate monitoring in the laboratory and on-site. Constr Build Mater 10(5):315–328CrossRefGoogle Scholar
  38. 38.
    Poursaee A (2010) Potentiostatic transient technique, a simple approach to estimate the corrosion current density and Stern–Geary constant of reinforcing steel in concrete. Cem Concr Res 40(9):1451–1458CrossRefGoogle Scholar
  39. 39.
    Andrade C, Buják R (2013) Effects of some mineral additions to Portland cement on reinforcement corrosion. Cem Concr Res 53:59–67CrossRefGoogle Scholar
  40. 40.
    Hansson CM (1984) Comments on electrochemical measurements of the rate of corrosion of steel in concrete. Cem Concr Res 14(4):574–584CrossRefGoogle Scholar
  41. 41.
    García-Alonso MC, Escudero ML, Miranda JM, Vega MI, Capilla F, Correia MJ, Salta M, Bennani A, González JA (2007) Corrosion behaviour of new stainless steels reinforcing bars embedded in concrete. Cem Concr Res 37(10):1463–1471CrossRefGoogle Scholar
  42. 42.
    ASTM C876-09 (2009) Standard test method for corrosion potentials of uncoated reinforcing steel in concrete. ASTM International, West Conshohocken, PAGoogle Scholar
  43. 43.
    Katwan MJ, Hodgkiess T, Arthur PD (1996) Electrochemical noise technique for the prediction of corrosion rate of steel in concrete. Mater Struct 29(5):286–294CrossRefGoogle Scholar
  44. 44.
    Girija S, Mudali UK, Khatak HS, Raj B (2007) The application of electrochemical noise resistance to evaluate the corrosion resistance of AISI type 304 SS in nitric acid. Corros Sci 49:4051–4068CrossRefGoogle Scholar
  45. 45.
    Alonso C, Andrade C, González JA (1988) Relation between resistivity and corrosion rate of reinforcements in carbonated mortar made with several cement types. Cem Concr Res 18(5):687–698CrossRefGoogle Scholar
  46. 46.
    González JA, Molina A, Escudero ML, Andrade C (1985) Errors in the electrochemical evaluation of very small corrosion rates-I. Polarization resistance method applied to corrosion of steel in concrete. Corros Sci 25(10):917–930CrossRefGoogle Scholar

Copyright information

© Iran University of Science and Technology 2019

Authors and Affiliations

  1. 1.Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAP), Instituto de Investigación en Ciencias Básicas y Aplicadas (IICBA)Universidad Autónoma del Estado de MorelosCuernavacaMexico

Personalised recommendations