Advertisement

International Journal of Civil Engineering

, Volume 18, Issue 2, pp 185–197 | Cite as

Laboratory Shear Strength Measurements of Municipal Solid Waste at Room and Simulated In Situ Landfill Temperature, Barmshoor Landfill, Iran

  • Amin FalamakiEmail author
  • Soheil Ghareh
  • Mehdi Homaee
  • Alireza Hamtaeipour Shirazifard
  • Sajjad Abedpour
  • Sattar Kiani
  • Najmeh Mousavi
  • Majid Rezaei
  • Mehran Taghizadeh Motlagh
  • Mostafa Dehbozorgi
  • Ali Nouri
Research paper
  • 53 Downloads

Abstract

This study was aimed to determine the influence of temperature within the landfill on the shear strength of the MSW samples through the shearing procedure. Different waste samples, i.e., the fresh (C1), 2 years old (C1-2Y) and lab oratory prepared (C2) MSW samples, were heated up, prepared, and placed in the shearing box with the designated temperatures of about 25, 45, and 65 °C (i.e., the range of an anaerobic landfill). The Mohr–Coulomb strength parameters for the warmed-up and room-temperature specimens were separately calculated and compared. The temperature decreases the friction angle from 21 to 17° for T > 45 °C. The cohesion was also decreased by temperature from 19.9 to 13.1 kPa. In addition, two nonlinear envelopes were developed for the specimens tested at room and simulated temperature within the landfill. The test results show a reduction of about 20% for friction angle and shear strength at the temperatures between 45 and 65 °C. Although the warmed-up specimens of fresh MSW were denser under certain normal stress, heating the MSW specimens to temperatures of 45 and 65 °C resulted in loss of the shear strength. Results further indicated that the temperature of the wastes plays an important role when the shear stress is conducted on the MSW specimens. It can be then concluded that temperature of the landfill should be considered as a factor influencing the shear strength of MSW. Considering temperature for site investigation of the shear strength and the correlation of the results with the laboratory tests is important, too.

Keywords

Landfill temperature Shear strength Municipal solid waste Direct shear test, warmed-up waste 

References

  1. 1.
    Eskandari M, Homaee M, Falamaki A (2016) Landfill site selection for municipal solid wastes in mountainous areas with landslide susceptibility. Environ Sci Pollut Res 23(12):12423–12434.  https://doi.org/10.1007/s11356-016-6459-x CrossRefGoogle Scholar
  2. 2.
    Guerrero LA, Maas G, Hogland W (2013) Solid waste management challenges for cities in developing countries. Waste Manag 33(1):220–232.  https://doi.org/10.1016/j.wasman.2012.09.008 CrossRefGoogle Scholar
  3. 3.
    Minghua Z, Xiumin F, Rovetta A, Qichang H, Vicentini F, Bingkai L, Giusti A, Yi L (2009) Municipal solid waste management in Pudong new area China. Waste manag 29(3):1227–1233.  https://doi.org/10.1016/j.wasman.2008.07.016 CrossRefGoogle Scholar
  4. 4.
    Falamaki A, Eskandari M, Homaee M, Gerashi M (2018) An improved multilayer compacted clay liner by adding bentonite and phosphate compound to sandy soil. KSCE J Civ Eng 22(10):3852–3859.  https://doi.org/10.1007/s12205-018-1554-9 CrossRefGoogle Scholar
  5. 5.
    Falamaki A, Shahin S (2018) Determination of shear strength parameters of municipal solid waste from its physical properties. Iran J Sci Technol Trans Civ Eng 43(Suppl 1):193–201.  https://doi.org/10.1007/s40996-018-0158-4 CrossRefGoogle Scholar
  6. 6.
    Feng S-J, Gao K-W, Chen Y-X, Li Y, Zhang L, Chen H (2017) Geotechnical properties of municipal solid waste at Laogang landfill, China. Waste Manag 63:354–365CrossRefGoogle Scholar
  7. 7.
    Vilar OM, Carvalhod M (2004) Mechanical properties of municipal solid waste. J Test Eval 32(6):438–449CrossRefGoogle Scholar
  8. 8.
    Dixon N, Jones DRV (2005) Engineering properties of municipal solid waste. Geotext Geomembr 23(3):205–233CrossRefGoogle Scholar
  9. 9.
    Bray JD, Zekkos D, Kavazanjian E Jr, Athanasopoulos GA, Riemer MF (2009) Shear strength of municipal solid waste. J Geotech Geoenviron Eng 135(6):709–722CrossRefGoogle Scholar
  10. 10.
    Machado SL, Karimpour-Fard M, Shariatmadari N, Carvalho MF, do Nascimento JC (2010) Evaluation of the geotechnical properties of MSW in two Brazilian landfills. Waste Manag 30(12):2579–2591.  https://doi.org/10.1016/j.wasman.2010.07.019 CrossRefGoogle Scholar
  11. 11.
    Li X, Shi J (2015) Stress–strain responses and yielding characteristics of a municipal solid waste (MSW) considering the effect of the stress path. Environ Earth Sci 73(7):3901–3912CrossRefGoogle Scholar
  12. 12.
    Reddy KR, Hettiarachchi H, Giri RK, Gangathulasi J (2015) Effects of degradation on geotechnical properties of municipal solid waste from Orchard hills landfill, USA. Int J Geosynth Ground Eng 1(3):24CrossRefGoogle Scholar
  13. 13.
    Ramaiah B, Ramana G, Datta M (2017) Mechanical characterization of municipal solid waste from two waste dumps at Delhi, India. Waste Manage 68:275–291.  https://doi.org/10.1016/j.wasman.2017.05.055 CrossRefGoogle Scholar
  14. 14.
    Gabr MA, Hossain M, Barlaz M (2007) Shear strength parameters of municipal solid waste with leachate recirculation. J Geotech Geoenviron Eng 133(4):478–484CrossRefGoogle Scholar
  15. 15.
    Hossain MS, Haque MA (2009) The effects of daily cover soils on shear strength of municipal solid waste in bioreactor landfills. Waste Manag 29(5):1568–1576.  https://doi.org/10.1016/j.wasman.2008.12.017 CrossRefGoogle Scholar
  16. 16.
    Reddy KR, Hettiarachchi H, Parakalla NS, Gangathulasi J, Bogner JE (2009) Geotechnical properties of fresh municipal solid waste at Orchard hills landfill, USA. Waste Manag 29(2):952–959CrossRefGoogle Scholar
  17. 17.
    Zekkos D, Athanasopoulos GA, Bray JD, Grizi A, Theodoratos A (2010) Large-scale direct shear testing of municipal solid waste. Waste Manag 30(8):1544–1555.  https://doi.org/10.1016/j.wasman.2010.01.024 CrossRefGoogle Scholar
  18. 18.
    Reddy KR, Hettiarachchi H, Gangathulasi J, Bogner JE (2011) Geotechnical properties of municipal solid waste at different phases of biodegradation. Waste Manag 31(11):2275–2286CrossRefGoogle Scholar
  19. 19.
    Shariatmadari N, Sadeghpour A, Razaghian F (2014) Effects of aging on shear strength behavior of municipal solid waste. Int J Civ Eng 12(3):226–237Google Scholar
  20. 20.
    Yeşiller N, Hanson JL, Liu W-L (2005) Heat generation in municipal solid waste landfills. J Geotech Geoenviron Eng 131(11):1330–1344CrossRefGoogle Scholar
  21. 21.
    Karimpour-Fard M, Machado SL (2012) Deformation characteristics of MSW materials. Electron J Geotech Eng 17(A):2009–2024Google Scholar
  22. 22.
    Jafari NH, Stark TD, Thalhamer T (2017) Progression of elevated temperatures in municipal solid waste landfills. J Geotech Geoenviron Eng 143(8):05017004CrossRefGoogle Scholar
  23. 23.
    Townsend TG, Powell J, Jain P, Xu Q, Tolaymat T, Reinhart D (2015) Sustainable practices for landfill design and operation. Springer, Heidelber gCrossRefGoogle Scholar
  24. 24.
    Falamaki A, Eskandari M, Khodayari S, Forouzeshfar I, Ghaedsharaf A, Baneshi Z (2019) Laboratory simulation of aeration on municipal solid waste from Barmshoor landfill. Int J Civ Eng 17(6):897–906.  https://doi.org/10.1007/s40999-019-00397-3 CrossRefGoogle Scholar
  25. 25.
    Chakma S, Mathur S (2017) Modelling gas generation for landfill. Environ Technol 38(11):1435–1442.  https://doi.org/10.1080/09593330.2016.1231226 CrossRefGoogle Scholar
  26. 26.
    Abreu AES, Vilar OM (2017) Influence of composition and degradation on the shear strength of municipal solid waste. Waste Manag 68:263–274.  https://doi.org/10.1016/j.wasman.2017.05.038 CrossRefGoogle Scholar
  27. 27.
    Zhang DQ, Tan SK, Gersberg RM (2010) Municipal solid waste management in China: status, problems and challenges. J Environ Manag 91(8):1623–1633.  https://doi.org/10.1016/j.jenvman.2010.03.012 CrossRefGoogle Scholar
  28. 28.
    Fard MK, Shariatmadari N, Keramati M, Kalarijani HJ (2014) An experimental investigation on the mechanical behavior of MSW. Int J Civ Eng 12(4):292–303Google Scholar
  29. 29.
    Norouzian Baghani A, Dehghani S, Farzadkia M, Delikhoon M, Emamjomeh MM (2017) Comparative study of municipal solid waste generation and composition in Shiraz city (2014). J Qazvin Univ Med Sci 21(2):57–65Google Scholar
  30. 30.
    Dixon N, Langer U, Gotteland P (2008) Classification and mechanical behavior relationships for municipal solid waste: study using synthetic wastes. J Geotech Geoenviron Eng 134(1):79–90CrossRefGoogle Scholar
  31. 31.
    Zhan TL, Chen Y, Ling W (2008) Shear strength characterization of municipal solid waste at the Suzhou landfill China. Eng Geol 97(3):97–111CrossRefGoogle Scholar
  32. 32.
    Karimpour-Fard M, Machado SL, Shariatmadari N, Noorzad A (2011) A laboratory study on the MSW mechanical behavior in triaxial apparatus. Waste Manag 31(8):1807–1819.  https://doi.org/10.1016/j.wasman.2011.03.011 CrossRefGoogle Scholar
  33. 33.
    Yuan P, Kavazanjian E, Chen W, Seo B (2011) Compositional effects on the dynamic properties of municipal solid waste. Waste Manag 31(12):2380–2390.  https://doi.org/10.1016/j.wasman.2011.07.009 CrossRefGoogle Scholar
  34. 34.
    Ramaiah B, Ramana G, Kavazanjian E Jr, Matasovic N, Bansal B (2015) Empirical model for shear wave velocity of municipal solid waste in situ. J Geotech Geoenviron Eng 142(1):06015012CrossRefGoogle Scholar
  35. 35.
    Landva AO, Clark JI (1990) Geotechnics of waste fill. Geotechnics of waste fills—theory and practice. ASTM International, PennsylvaniaCrossRefGoogle Scholar
  36. 36.
    Zekkos D, Bray JD, Riemer MF (2012) Drained response of municipal solid waste in large-scale triaxial shear testing. Waste Manag 32(10):1873–1885.  https://doi.org/10.1016/j.wasman.2012.05.004 CrossRefGoogle Scholar
  37. 37.
    Stark TD, Huvaj-Sarihan N, Li G (2009) Shear strength of municipal solid waste for stability analyses. Environ Geol 57(8):1911–1923CrossRefGoogle Scholar
  38. 38.
    Babu GS, Lakshmikanthan P, Santhosh L (2015) Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore. Waste Manag 39:63–70CrossRefGoogle Scholar
  39. 39.
    Gomes C, Lopes ML, Oliveira PJV (2013) Municipal solid waste shear strength parameters defined through laboratorial and in situ tests. J Air Waste Manag Assoc 63(11):1352–1368CrossRefGoogle Scholar
  40. 40.
    Bareither CA, Benson CH, Edil TB (2012) Effects of waste composition and decomposition on the shear strength of municipal solid waste. J Geotech Geoenviron Eng 138(10):1161–1174CrossRefGoogle Scholar
  41. 41.
    Cerato AB, Lutenegger AJ (2006) Specimen size and scale effects of direct shear box tests of sands. Geotech Test J 29(6):507–516Google Scholar
  42. 42.
    Zekkos D, Fei X (2017) Constant load and constant volume response of municipal solid waste in simple shear. Waste Manag 63:380–392.  https://doi.org/10.1016/j.wasman.2016.09.029 CrossRefGoogle Scholar
  43. 43.
    Ward IM, Sweeney J (2012) Mechanical properties of solid polymers. Wiley, ChichesterCrossRefGoogle Scholar

Copyright information

© Iran University of Science and Technology 2019

Authors and Affiliations

  • Amin Falamaki
    • 1
    Email author
  • Soheil Ghareh
    • 1
  • Mehdi Homaee
    • 2
  • Alireza Hamtaeipour Shirazifard
    • 3
  • Sajjad Abedpour
    • 3
  • Sattar Kiani
    • 3
  • Najmeh Mousavi
    • 3
  • Majid Rezaei
    • 3
  • Mehran Taghizadeh Motlagh
    • 3
  • Mostafa Dehbozorgi
    • 3
  • Ali Nouri
    • 3
  1. 1.Department of Civil EngineeringPayame Noor UniversityTehranIran
  2. 2.Department of Irrigation and DrainageTarbiat Modares UniversityTehranIran
  3. 3.Geotechnical EngineeringPayame Noor UniversityTehranIran

Personalised recommendations