Advertisement

International Journal of Civil Engineering

, Volume 17, Issue 1, pp 1–18 | Cite as

Modelling of Short-Term Interactions Between Concrete Support and the Excavated Damage Zone Around Galleries Drilled in Callovo–Oxfordian Claystone

  • Albert Argilaga
  • Frèdèric Collin
  • Laurie Lacarrière
  • Robert Charlier
  • Gilles Armand
  • Benjamin CerfontaineEmail author
Research Paper
  • 52 Downloads

Abstract

Production of energy from nuclear power plants generates high-level radioactive nuclear waste, harmful during dozens of 1000 years. Deep geological disposal of nuclear waste represents a reliable solutions for its safe isolation. Confinement of radioactive wastes relies on the multi-barrier concept in which isolation is provided by a series of engineered (canister, backfill) and natural (host rock) barriers. Few underground research laboratories have been built all over the world to test and validate storage solutions. The drilling of disposal drifts may generate cracks, fractures/strain localisation in shear bands within the rock surrounding the gallery especially in argillaceous rocks. These degradations affect the hydro-mechanical properties of the material, such as permeability, e.g., creating a preferential flow path for radionuclide migration. Hydraulic conductivity increase within this zone must remain limited to preserve the natural barrier. In addition, galleries are currently reinforced by different types of concrete supports such as shotcrete and/or prefab elements. Their purpose is twofold: avoiding partial collapse of the tunnel during drilling operations and limiting convergence of the surrounding rock. Properties of both concrete and rock mass are time dependent, due to shotcrete hydration and hydro-mechanical couplings within the host rock. By the use of a hydro-mechanical coupled finite-element code with a second-gradient regularization, this paper aims at investigating and predicting support and rock interactions (convergence and stress field). The effect of shotcrete hydration evolution, spraying time, and use of compressible wedges is studied to determine their relative influence.

Keywords

Nuclear waste FEM modelling COX Numerical modelling Sprayed concrete 

References

  1. 1.
    Agency IAE (2004) From Obninsk beyond: nuclear power conference looks to future. https://www.iaea.org/newscenter/news/obninsk-beyond-nuclear-power-conference-looks-future. Accessed 11 Nov 2010
  2. 2.
    Feiveson H, Mian Z, Ramana M, von Hippel F (2011) Managing nuclear spent fuel: policy lessons from a 10-country study. Bull Atom Sci 27:27Google Scholar
  3. 3.
    Agency ONE (1995)The environmental and ethical basis of geological disposal of longlived radioactive wastes. A collective opinion of the Radioactive Waste Management Committee of the OECD Nuclear Energy Agency. Technical reportGoogle Scholar
  4. 4.
    Andra D (2005) Evaluation of the feasibility of a geological repository in an argillaceous formation. Andra, Chatenay-MalabryGoogle Scholar
  5. 5.
    Félix B, Lebon P, Miguez R, Plas F (1996) A review of the andra’s research programmes on the thermo-hydromechanical behavior of clay in connection with the radioactive waste disposal project in deep geological formations. Eng Geol 41(1–4):35–50Google Scholar
  6. 6.
    Blümling P, Bernier F, Lebon P, Martin CD (2007) The excavation damaged zone in clay formations time-dependent behaviour and influence on performance assessment. Phys Chem Earth Parts A/B/C 32(8):588–599Google Scholar
  7. 7.
    Armand G, Leveau F, Nussbaum C, de La Vaissiere R, Noiret A, Jaeggi D, Landrein P, Righini C (2014) Geometry and properties of the excavation-induced fractures at the meuse/haute-marne url drifts. Rock Mech Rock Eng 47(1):21–41Google Scholar
  8. 8.
    Pietruszczak S, Lydzba D, Shao J-F (2002) Modelling of inherent anisotropy in sedimentary rocks. Int J Solids Struct 39(3):637–648zbMATHGoogle Scholar
  9. 9.
    Pardoen B, Talandier J, Collin F (2016) Permeability evolution and water transfer in the excavation damaged zone of a ventilated gallery. Int J Rock Mech Min Sci 85:192–208Google Scholar
  10. 10.
    Collin F, Chambon R, Charlier R (2006) A finite element method for poro mechanical modelling of geotechnical problems using local second gradient models. Int J Numer Method Eng 65(11):1749–1772MathSciNetzbMATHGoogle Scholar
  11. 11.
    Oreste P, Pella D (1997) Modelling progressive hardening of shotcrete in convergence-confinement approach to tunnel design. Tunn Undergr Sp Technol 12(3):425–431Google Scholar
  12. 12.
    Bryne L (2014) Time dependent material properties of Shotcrete for hard rock tunneling. PhD thesis, KTH StockholmGoogle Scholar
  13. 13.
    Kim J, Ryu J, Hooton R (2008) Evaluation of strength and set behavior of mortar containing shotcrete set accelerators. Can J Civ Eng 35(4):400–407Google Scholar
  14. 14.
    Won J, Hwang U-J, Kim C, Lee S (2013) Mechanical performance of shotcrete made with a high-strength cement-based mineral accelerator. Constr Build Mater 49:175–183Google Scholar
  15. 15.
    Bryne L, Ansell A, Holmgren J (2014) Laboratory testing of early age bond strength of shotcrete on hard rock. Tunn Undergr Sp Technol 41(1):113–119Google Scholar
  16. 16.
    Charron J-P, Marchand J, Bissonnette B, Gérard B (2001) Étude comparative de modèles phénoménologiques décrivant le comportement au jeune âge du béton. Partie 1. Can J Civ Eng 28(2):323–331Google Scholar
  17. 17.
    Charron J-P, Marchand J, Bissonnette B, Gérard B (2001) Étude comparative de modèles phénoménologiques décrivant le comportement au jeune âge du béton. Partie 2. Can J Civ Eng 28(2):323–331Google Scholar
  18. 18.
    De Schutter G (1999) Degree of hydration based Kelvin model for the basic creep of early age concrete. Mater Struct 32:260–265Google Scholar
  19. 19.
    Tazawa E-I, Miyazawa S (1995) Influence of cement and admixture on autogenous shrinkage of cement paste. Cem Concr Res 25(2):281–287Google Scholar
  20. 20.
    Kolani B, Buffo-Lacarrière L, Sellier A, Escadeillas G, Boutillon L, Linger L (2012) Hydration of slag-blended cements. Cement Concr Compos 34(9):1009–1018Google Scholar
  21. 21.
    Briffaut M, Benboudjema F, Torrenti J-M, Nahas G (2012) Concrete early age basic creep: experiments and test of rheological modelling approaches. Constr Build Mater 36:373–380Google Scholar
  22. 22.
    Gutsch A (2002) Properties of early age concrete–experiments and modelling. Mater Struct 35(246):76–79Google Scholar
  23. 23.
    van Breugel K (1995) Numerical simulation of hydration and microstructural development in hardening cement-based materials. (I) theory. Cem Concr Res 25(2):319–331Google Scholar
  24. 24.
    Buffo-Lacarrière L, Sellier A, Escadeillas G, Turatsinze A (2007) Multiphasic finite element modeling of concrete hydration. Cem Concr Res 37(2):131–138Google Scholar
  25. 25.
    De Schutter G, Taerwe L (1996) Degree of hydration-based description of mechanical properties of early age concrete. Mater Struct 29(6):335–344Google Scholar
  26. 26.
    Gawin D, Pesavento F, Schrefler BA (2007) Modelling creep and shrinkage of concrete by means of effective stresses. Mater Struct 40(6):579–591Google Scholar
  27. 27.
    Hilaire A, Benboudjema F, Darquennes A, Berthaud Y, Nahas G (2014) Modeling basic creep in concrete at early-age under compressive and tensile loading. Nucl Eng Des 269:222–230Google Scholar
  28. 28.
    Sellier A, Multon S, Buffo-Lacarrière L, Vidal T, Bourbon X, Camps G (2016) Concrete creep modelling for structural applications: Non-linearity, multi-axiality, hydration, temperature and drying effects. Cem Concr Res 79:301–315Google Scholar
  29. 29.
    Sercombe J, Hellmich C, Ulm FJ, Mang H (2000) Modeling of early-age creep of shotcrete. I: model and model parameters. J Eng Mech 126:284–291Google Scholar
  30. 30.
    Buffo-Lacarrière L, Sellier A, Turatsinze A, Escadeillas G (2011) Finite element modelling of hardening concrete: application to the prediction of early age cracking for massive reinforced structures. Mater Struct 44(10):1821–1835Google Scholar
  31. 31.
    Benboudjema F, Torrenti JM (2008) Early-age behaviour of concrete nuclear containments. Nucl Eng Des 238(10):2495–2506Google Scholar
  32. 32.
    Meschke G (1996) Consideration of aging of shotcrete in the context of a 3D viscoplastic material model. Int J Numer Eng 39(3):3123–3143zbMATHGoogle Scholar
  33. 33.
    Hellmich C, Sercombe J, Ulm FJ, Mang H (2000) Modeling of early-age creep of shotcrete. II: Application to tunneling. J Eng Mech 126:292–299Google Scholar
  34. 34.
    Galli G, Grimaldi A, Leonardi A (2004) Three-dimensional modelling of tunnel excavation and lining. Comput Geotech 31(3):171–183Google Scholar
  35. 35.
    Buffo-Lacarrière L, Sellier A (2011) Chemo-mechanical modeling requirements for the assessment of concrete structure service life. J Eng Mech 137(9):625–633Google Scholar
  36. 36.
    Olivella S, Gens A (1996) Numerical formulation for a simulator (code-bright)for the coupled analysis of saline media. Eng Comput 13:87–112zbMATHGoogle Scholar
  37. 37.
    Khalili N, Habte M, Zargarbashi S (2008) A fully coupled flow deformation model for cyclic analysis of unsaturated soils including hydraulic and mechanical hystereses. Comput Geotech 35(6):872–889Google Scholar
  38. 38.
    Khoshghalb A, Khalili N (2013) A meshfree method for fully coupled analysis of flow and deformation in unsaturated porous media. Int J Numer Anal Meth Geomech 37(7):716–743Google Scholar
  39. 39.
    Cheng A-D (1997) Material coefficients of anisotropic poroelasticity. Int J Rock Mech Min Sci 34(2):199–205Google Scholar
  40. 40.
    Pardoen B (2015) Hydro-mechanical analysis of the fracturing induced by the excavation of nuclear waste repository galleries using shear banding. PhD Thesis, University of LiegeGoogle Scholar
  41. 41.
    Van Eekelen H (1980) Isotropic yield surfaces in three dimensions for use in soil mechanics. Int J Numer Anal Meth Geomech 4(1):89–101zbMATHGoogle Scholar
  42. 42.
    Hajiabdolmajid V, Kaiser P (2002) Brittleness of rock and stability assessment in hard rock tunneling. Tunn Undergr Sp Technol 18(1):35–48Google Scholar
  43. 43.
    Martin C, Chandler N (1994) The progressive fracture of lac du bonnet granite. Int J Rock Mech Min Sci Geomech Abstr 31(6):643–659Google Scholar
  44. 44.
    Chen L, Shao J-F, Huang H (2010) Coupled elastoplastic damage modeling of anisotropic rocks. Comput Geotech 37(1):187–194Google Scholar
  45. 45.
    Pietruszczak S, Pande G (2001) Description of soil anisotropy based on multi-laminate framework. Int J Numer Anal Meth Geomech 25(2):197–206zbMATHGoogle Scholar
  46. 46.
    Jia Y, Bian H, Duveau G, Su K, Shao J-F (2008) Hydromechanical modelling of shaft excavation in meuse/haute-marne laboratory. Phys Chem Earth Parts A/B/C 33:S422–S435Google Scholar
  47. 47.
    Zhou H, Jia Y, Shao J-F (2008) A unified elastic-plastic and viscoplastic damage model for quasi-brittle rocks. Int J Rock Mech Min Sci 45(8):1237–1251Google Scholar
  48. 48.
    Perzyna P (1966) Fundamental problems in viscoplasticity. Adv Appl Mech 9:243–377Google Scholar
  49. 49.
    Pardoen B, Collin F (2017) Modelling the influence of strain localisation and viscosity on the behaviour of underground drifts drilled in claystone. Comput Geotech 85:351–367Google Scholar
  50. 50.
    Collin F, Caillerie D, Chambon R (2009) Analytical solutions for the thick-walled cylinder problem modeled with an isotropic elastic second gradient constitutive equation. Int J Solids Struct 46(22):3927–3937zbMATHGoogle Scholar
  51. 51.
    Germain P La (1973) Méthode des puissances virtuelles en mécanique des milieux continus. J Méc 12:236–274zbMATHGoogle Scholar
  52. 52.
    Chambon R, Caillerie D, El Hassan N (1998) One-dimensional localisation studied with a second grade model. Eur J Mech A Solids 17(4):637–656MathSciNetzbMATHGoogle Scholar
  53. 53.
    Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898Google Scholar
  54. 54.
    Charlier R (1987) Approche unifié de quelques problèmes non linéaires de mécanique des milieux continus par la méthode des éléments finis (grandes déformations des métaux et des sols, contact unilatéral de solides, conduction thermique et écoulements en milieu poreux). PhD Thesis, University of LiegeGoogle Scholar
  55. 55.
    Collin F (2003) Couplages thermo-hydro-mécaniques dans les sols et les roches tendres partiellement saturés. PhD thesis, Université de Liège, Liège,BelgiqueGoogle Scholar
  56. 56.
    Panet M, Guenot A (1983) Analysis of convergence behind the face of a tunnel: tunnelling 82, proceedings of the 3rd international symposium, Brighton, 7–11 June 1982, pp 197–204. London: Imm, 1982. Int J Rock Mech Min Sci Geomech Abstr 20:A16Google Scholar
  57. 57.
    Prudêncio LR (1998) Accelerating admixtures for shotcrete. Cement Concr Compos 20(2–3):213–219Google Scholar
  58. 58.
    Leca E (1989) Analysis of NATM and shield tunneling in soft ground. PhD Thesis, Virginia Polytechnic Institute and State UniversityGoogle Scholar

Copyright information

© Iran University of Science and Technology 2018

Authors and Affiliations

  1. 1.Liège UniversitèLiègeBelgium
  2. 2.Laboratoire Matèriaux et Durabilitè des Constructions (LMDC)Universitè de ToulouseToulouse cedex 04France
  3. 3.ANDRA, Centre de Meuse/Haute-MarneBureFrance
  4. 4.University of DundeeDundeeUK

Personalised recommendations