International Journal of Civil Engineering

, Volume 17, Issue 1, pp 145–160 | Cite as

Rheological Characterisation of Foam-Conditioned Sands in EPB Tunneling

  • Mario Galli
  • Markus ThewesEmail author
Research Paper


The flow behaviour of soil–foam mixtures, used as support medium in closed-mode tunnelling with Earth pressure balance shield machines, is an essential factor for the operation of the tunnel boring machine (TBM). On the one hand, a rather soft consistency is required providing a homogeneous face support pressure transfer to the tunnel face. High accuracy in face support regulation is crucial for settlement control, especially in sensitive environments, such as urban areas. On the other hand, a rather stiff consistency is preferable concerning transportation and disposal of the excavated ground to avoid additional treatments for landfilling, tipping or sewage management. So far, the flow behaviour of soil–foam mixtures has been investigated by index tests. Most notably, the slump test, known from concrete technology, is widely applied on soil–foam mixtures. However, flow is actually a non-static phenomenon and cannot be expressed by a single parameter, which is derived from an equilibrium-state condition at rest. This contribution focuses on the rheology of soil–foam mixtures aiming at a better understanding of the flow behaviour and of the influences the individual components have on it during the excavation process. Investigating the interaction between soil, water and foam provides optimisation strategies for the TBM performance.


EPB tunnelling Shield machine Soil conditioning Foam Rheology Testing 



Financial support was provided by the German Science Foundation (DFG) in the framework of project A4 of the Collaborative Research Centre SFB 837. This support is gratefully acknowledged. Parts of this publication may represent excerpts from the first author’s doctoral thesis [18], which was prepared within this research project.


  1. 1.
    Maidl U (1997) Aktive Stützdrucksteuerung bei Erddruckschilden. Bautechnik 6(74):376–380Google Scholar
  2. 2.
    Budach C, Thewes M (2015) Application ranges of EPB shields in coarse ground based on laboratory research. Tunn Undergr Sp Tech 50:296–304CrossRefGoogle Scholar
  3. 3.
    Galli M, Thewes M (2014) Investigations for the application of EPB shields in difficult grounds. Geomech Tunnelling 1(7):31–44CrossRefGoogle Scholar
  4. 4.
    Maidl U, Mahfuz Monteiro A, Comulada M, Foster J, Innovativer Hybridschildeinsatz in Rio de Janeiro: Erddruckschild mit alternativer Band/-Pumpförderung, Separieranlage auf dem Nachläufer, neuartiges Konditionierungskonzept, Forschung + Praxis, 2017; p 49Google Scholar
  5. 5.
    Budach C (2012) Untersuchungen zum erweiterten Einsatz von Erddruckschilden in grobkörnigem Lockergestein. Shaker, AachenGoogle Scholar
  6. 6.
    Maidl U Erweiterung der Einsatzbereiche der Erddruckschilde durch Bodenkonditionierung mit Schaum, Ph. Thesis D, Ruhr-Universität Bochum, 1995Google Scholar
  7. 7.
    Quebaud S, Sibai M, Henry JP (1998) Use of chemical foam for improvements in drilling by earth-pressure balanced shields in granular soils. Tunn Undergr Sp Tech 2(13):173–180CrossRefGoogle Scholar
  8. 8.
    Borghi FX, Soil conditioning for pipe-jacking and tunnelling. Thesis PhD, University of Cambridge, 2006Google Scholar
  9. 9.
    Peña Duarte M, Foam as a soil conditioner in tunnelling: physical and mechanical properties of conditioned sands, Thesis PhD, University of Cambridge, 2007Google Scholar
  10. 10.
    Bezuijen A, Schaminée PEL Simulation of the EPB-shield TBM in model tests with foam as additive. In: Proceedings of the international symposium on modern tunneling science and technology, 2001; 157–263Google Scholar
  11. 11.
    Borio L, Soil conditioning for cohesionless soils, Thesis PhD, Politecnico di Torino, 2010Google Scholar
  12. 12.
    Peila D, Picchio A, Chieregato A (2013) Earth pressure balance tunnelling in rock masses: laboratory feasibility study of the conditioning process. Tunn Undergr Sp Tech 35:55–66CrossRefGoogle Scholar
  13. 13.
    Vinai R, A contribution to the study of soil conditioning techniques for EPB TBM applications in cohesionless soils, Thesis PhD, Politecnico di Torino, 2006Google Scholar
  14. 14.
    Vennekötter J (2012) Separationsfreier Mikrotunnelbau durch Pumpförderung schaumkonditionierter Böden. Shaker, AachenGoogle Scholar
  15. 15.
    DIN EN 12350-2, Testing fresh concrete—Part 2: slump-test Beuth, Berlin, 2009Google Scholar
  16. 16.
    Meng Q, Qu F, Li S (2011) Experimental investigation on viscoplastic parameters of conditioned sands in earth pressure balance shield tunnelling. J Mech Sci Technol 9(25):2259–2266CrossRefGoogle Scholar
  17. 17.
    Messerklinger S, Zumsteg R, Puzrin AM (2011) A new pressurized vane shear apparatus. Geotech Test J 2(34):1–10Google Scholar
  18. 18.
    Galli M (2016) Rheological characterisation of earth-pressure-balance (epb) support medium composed of non-cohesive soils and foam. Shaker, AachenGoogle Scholar
  19. 19.
    EFNARC, Specification and Guidelines for the use of specialist products for Soft Ground Tunnelling, Farnham, Surrey, 2003Google Scholar
  20. 20.
    Schatzmann M, Rheometry for large particle fluids and debris flows, Doctoral Thesis, Eidgenössische Technische Hochschule ETH Zürich, 2005Google Scholar
  21. 21.
    Schatzmann M, Bezzola GR, Minor HE, Windhab EJ, Fischer P (2009) Rheometry for large-particulated fluids: analysis of the ball measuring system and comparison to debris flow rheometry. Rheol Acta 7(48):715–733CrossRefGoogle Scholar
  22. 22.
    Tyrach J, “Rheologische Charakterisierung von zementären Baustoffsystemen”, Doctoral Thesis, Universität Nürnberg-Erlangen, 2000Google Scholar
  23. 23.
    Müller M, Tyrach J, Brunn PO, Rheological characterization of machine-applied plasters, ZKG Int, 2000; (5)52, 252–258Google Scholar
  24. 24.
    Murata J (1984) Flow and deformation of fresh concrete. Materiaux et Constr 98(74):117–129CrossRefGoogle Scholar
  25. 25.
    Clayton S, Grice TG, Boger DV Analysis of the slump test for on-site yield stress measurement of mineral suspensions. Int J Miner Process 2003; 1–4(70) 3–21CrossRefGoogle Scholar
  26. 26.
    Roussel N, Coussot P (2005) Fifty-cent rheometer for yield stress measurements: from slump to spreading flow. J Rheol 3(49):705–718CrossRefGoogle Scholar
  27. 27.
    Roussel N, Stefani C, Leroy R (2005) From mini-cone test to Abrams cone test: measurement of cement-based materials yield stress using slump tests. Cement Concr Res 5(35):817–822CrossRefGoogle Scholar
  28. 28.
    Flatt RJ, Larosa D, Roussel N (2006) Linking yield stress measurements: spread test versus Viskomat. Cement Concr Res 1(36):99–109CrossRefGoogle Scholar
  29. 29.
    Zumsteg R, Plötze M, Puzrin AM (2012) Effect of soil conditioners on the pressure and rate-dependent shear strength of different clays. J Geotech Geoenviron 9(138):1138–1146CrossRefGoogle Scholar
  30. 30.
    Galli M, Thewes M, Rheology of Foam-conditioned Sands in EPB Tunneling, In: Proceedings of the ITA World Tunnel Congress 2016Google Scholar
  31. 31.
    Dobashi H, Sakurai Y, Konishi Y, Ouchi S, Matsubara K, Kitayama A, Takahashi H, Visualizing excavated soil flow in the cutter chamber of a large earth pressure balanced shield, In: Proceedings of the 31st ITA-AITES world tunnel congress, 2005; 377–388Google Scholar
  32. 32.
    Wessels N, Dang TS, Hackl K, Meschke G, Cutting and material transport in EPB shield machines: a coupled simulation approach, In: EURO:TUN 2013. Proceedings of the third international conference on computational methods in tunneling and subsurface engineering, 2013; 599–609Google Scholar

Copyright information

© Iran University of Science and Technology 2018

Authors and Affiliations

  1. 1.PORR Deutschland GmbHDüsseldorfGermany
  2. 2.Institute for Tunnelling and Construction ManagementRuhr-Universität BochumBochumGermany

Personalised recommendations