Advertisement

Optimal Controller Design for Inverter-Based Microgrids

  • Esmaeel RokrokEmail author
  • Fariba Shavakhi Zavareh
  • Jafar Soltani
  • Mahmoud Reza Shakarami
Research Paper
  • 47 Downloads

Abstract

This paper presents a comprehensive control scheme for inverter-based distributed generations (DGs) in grid-connected microgrids (MGs). The proposed control strategy regulates active and reactive power of DGs in order to adjust output voltages of the DGs under balanced/unbalanced loading and fault conditions. In this paper, an adaptive hyper-plane sliding mode controller is developed for positive and negative sequences of active and reactive power in dq0 reference frame based on quasi-dynamic phasor. All the parameters of controllers are derived via particle swarm optimization algorithm in order to minimize an appropriate cost function. This controller is fast, stable and robust against uncertainties of the output filter of the inverter, variations of the network parameters and load disturbances. In addition, the fault ride-through capability of the system can be improved. In the presence of unbalanced loads and faults, output voltages the DG are controlled to remain balanced and unchanged. Performance of the proposed controller is compared with a conventional PI controller and a conventional sliding mode controller. Effectiveness and accuracy of the proposed control strategy are verified through simulating a test microgrid in the presence of unbalanced loads and some faults.

Keywords

Adaptive sliding mode control Distributed generator Dynamic analysis Microgrid Unsymmetrical faults 

References

  1. Ali Z, Christofides N, Hadjidemetriou L, Kyriakides E (2017) Performance enhancement of MAF based PLL with phase error compensation in the pre-filtering stage. In: 2017 IEEE Manchester PowerTechGoogle Scholar
  2. Baimel D, Belikov J, Guerrero JM, Levron Y (2017) Dynamic modeling of networks, microgrids, and renewable sources in the dq0 reference frame: a survey. IEEE Trans 5:21323–21335Google Scholar
  3. Belikov J, Levron Y (2017) Comparison of time-varying phasor and dq0 dynamic models for large transmission networks. Electr Power Energy Syst 93:65–74CrossRefGoogle Scholar
  4. Bhaskara SN, Chowdhury BH (2012) Microgrids-a review of modeling, control, protection, simulation and future potential. In: Power and energy society general meeting. IEEE, pp 1–7Google Scholar
  5. Bolognani S, Zampieri S (2013) A distributed control strategy for reactive power compensation in smart microgrids. IEEE Trans Autom Control 58(11):2818–2833MathSciNetCrossRefGoogle Scholar
  6. Brabandere KD, Bolsens B, den Keybus JV, Woyte A, Driesen J, Belmans R (2007) A voltage and frequency droop control method for parallel inverters. IEEE Trans Power Electron 22(4):1107–1115CrossRefGoogle Scholar
  7. Camacho A, Castilla M, Miret J, Vasquez JC, Alarcón-Gallo E (2013) Flexible voltage support control for three-phase distributed generation inverters under grid fault. Trans Ind Electron 60(4):1429–1441CrossRefGoogle Scholar
  8. Cañizares CA, Palma-Behnke R, Olivares DE, Mehrizi-Sani A, Etemadi AH, Cañizares CA, Iravani R, Kazerani M, Hajimiragha AH, Gomis-Bellmunt O, Saeedifard M, Palma-Behnke R, Jiménez-Estévez GA, Hatziargyriou ND (2014) Trends in microgrid control. IEEE Trans Smart Grid 5(4):1905–1919CrossRefGoogle Scholar
  9. Chang F, Chang E, Liang T, Chen J (2011) Digital-signal-processor based DC/AC inverter with integral-compensation terminal sliding-mode control. IET Power Electron 4(1):159–167CrossRefGoogle Scholar
  10. Chen Z, Luo A, Wang H, Chen Y, Li M, Huang Y (2015) Adaptive sliding-mode voltage control for inverter operating in islanded mode in microgrid. Electr Power Energy Syst 66:133–143CrossRefGoogle Scholar
  11. Chen Z, Luo A, Wang H et al (2016) Adaptive sliding-mode voltage control for inverter operating in islanded mode in microgrid. IEEE Trans Sustain Energy 7(4):1482–1491CrossRefGoogle Scholar
  12. Delghavi MB, Yazdani A (2017) Sliding-mode control of AC voltages and currents of dispatchable distributed energy resources in master–slave-organized inverter-based microgrids. IEEE Trans Smart Grid 10(1):980–991CrossRefGoogle Scholar
  13. Delghavi MB, Shoja-Majidabad S, Yazdani A (2016) Fractional-order sliding-mode control of islanded distributed energy resource systems. IEEE Trans Sustain Energy 7(4):1482–1491CrossRefGoogle Scholar
  14. Gudey SK, Gupta R (2015) Sliding-mode control in voltage source inverter-based higher-order circuits. Int J Electron 102(4):668–689CrossRefGoogle Scholar
  15. Gudey SK, Gupta R (2016) Recursive fast terminal sliding mode control in voltage source inverter for a low-voltage microgrid system. IET Gener Transm Distrib 10(7):1536–1543CrossRefGoogle Scholar
  16. Guo X, Liu W, Zhang X et al (2015) Flexible control strategy for grid-connected inverter under unbalanced grid faults without PLL. IEEE Trans Power Electron 30(4):1773–1778CrossRefGoogle Scholar
  17. Guo X, Liu W, Lu Z (2017) Flexible power regulation and current-limited control of grid-connected inverter under unbalanced grid voltage faults. IEEE Trans Ind Electron 64(9):7425–7432CrossRefGoogle Scholar
  18. Hatziargyriou N, Asano H, Iravani MR, Marnay C (2007) Microgrids. IEEE Power Energy Mag 5(4):78–94CrossRefGoogle Scholar
  19. Katiraei F, Iravani R, Hatziargyriou N, Dimeas A (2008) Microgrids management. IEEE Power Energy Mag 6(3):54–65CrossRefGoogle Scholar
  20. Lee T, Hu S, Chan Y (2013) D-STATCOM with positive-sequence admittance and negative-sequence conductance to mitigate voltage fluctuations in high-level penetration of distributed generation systems. IEEE Trans Ind Electron 60(4):1417–1428CrossRefGoogle Scholar
  21. Mu C, Tang Y, He H (2017) Improved sliding mode design for load frequency control of power system integrated an adaptive learning strategy. IEEE Trans Ind Electron 64(8):6742–6751CrossRefGoogle Scholar
  22. Pogaku N, Prodanovic M, Green TC (2007) Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Trans Power Electron 22(2):613–625CrossRefGoogle Scholar
  23. Rezaei MM, Soltani J (2015) A robust control strategy for a grid-connected multi-bus microgrid under unbalanced load conditions. Int J Electr Power Energy Syst 71:68–76CrossRefGoogle Scholar
  24. Rocabert J, Luna A, Blaabjerg F, Rodríguez P (2012) Control of power converters in AC microgrids. IEEE Trans Power Electron 27(11):4734–4749CrossRefGoogle Scholar
  25. Rodriguez P, Timbus AV, Teodorescu R, Liserre M, Blaabjerg F (2007) Flexible active power control of distributed power generation systems during grid faults. IEEE Trans Ind Electron 54(5):2583–2592CrossRefGoogle Scholar
  26. Schiffer J, Zonetti D, Ortega R, Stankovic AM, Sezi T, Raisch J (2016) A survey on modeling of microgrids—from fundamental physics to phasors and voltage sources. Automatica 74:135–150MathSciNetCrossRefGoogle Scholar
  27. Su CL, Teng JH (2007) Economic evaluation of a distribution automation project. IEEE Trans Ind Appl 43(6):1417–1425CrossRefGoogle Scholar
  28. Su X, Han M, Guerrero JM, Sun H (2015) Microgrid stability controller based on adaptive robust total SMC. Energies 8(3):1784–1801CrossRefGoogle Scholar
  29. Tang Y, Ju P, He H, Qin C, Wu F (2013) Optimized control of DFIG based wind generation using sensitivity analysis and particle swarm optimization. IEEE Trans Smart Grid 4(1):509–520CrossRefGoogle Scholar
  30. Teodorescu R, Liserre M, Rodriguez P (2011) Grid converters for photovoltaic and wind power systems. Wiley, New YorkCrossRefGoogle Scholar

Copyright information

© Shiraz University 2019

Authors and Affiliations

  • Esmaeel Rokrok
    • 1
    Email author
  • Fariba Shavakhi Zavareh
    • 1
  • Jafar Soltani
    • 2
  • Mahmoud Reza Shakarami
    • 1
  1. 1.Department of Technical and EngineeringLorestan UniversityKhorramabadIran
  2. 2.Faculty of Electrical and Computer EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations