Skip to main content

Advertisement

Log in

Load Sharing and Arrangement through an Effective Utilization of SOFC/Super-capacitor/Battery in a Hybrid Power System

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

Solid oxide fuel cell (SOFC) provides several benefits such as high efficiency, modularity, quiet operation and cogeneration alternatives. Nevertheless, the main weakness in SOFC-based power plant has the slow dynamic response during transient situations in peak demand since this problem can be addressed by using complementary system such as a super-capacitor (SC). This paper provides an optimal load sharing and arrangement strategy (LSAS) for a hybrid power system which combines a SOFC stack, a SC module and a battery bank that support local grid. According to LSAS, the SOFC is the primary power source. The SC module is utilized as a backup and complement device to take care of the load following problems of SOFC during transient. The battery bank is added as a high energy density and/or backup device to stabilize the DC bus voltage, while an electrolyzer (ELYZ) is used as a dump load during surplus power. The LSAS operates in two layers. The external layer accomplished the overall power management system. Depending upon load demand, this layer generates references to the internal layer. The internal layer controls the individual subsystems, i.e., SOFC, ELYZ, SC and battery according to the references coming from the external layer. A complete MATLAB/Simulink model has been established to check the performance of the proposed system for the real load conditions. Simulation results show the effectiveness of the proposed system in terms of power transfer, load tracking and grid stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Zahran MB (2003) Photovoltaic hybrid systems reliability and availability. J Power Electron 3(3):145–150

    Google Scholar 

  2. Rubbia C (2006) Today the world of tomorrow—the energy challenge. Energy Convers Manag 47(17):2695–2697

    Article  Google Scholar 

  3. Zhou T, Francois B, el Hadi Lebbal M, Lecoeuche S (2009) Real-time emulation of a hydrogen-production process for assessment of an active wind-energy conversion system. IEEE Trans Ind Electron 56(3):737–746

    Article  Google Scholar 

  4. Kim YH, Kim SS (1999) An electrical modeling and fuzzy logic control of a fuel cell generation system. IEEE Trans Energy Convers 14(2):239–244

    Article  Google Scholar 

  5. Papadopoulos DP, Dermentzoglou JC (2002) Economic viability analysis of planned wec system installations for electrical power production. Renew Energy 25(2):199–217

    Article  Google Scholar 

  6. Hoseinnia S, Sadeghzadeh SM (2009) A comparative study of fuel cell technologies and their role in distributed generation. In: EUROCON 2009, EUROCON’09. IEEE, pp 464–469

  7. Das T, Snyder S (2011) Adaptive control of a solid oxide fuel cell ultra-capacitor hybrid system. In: American control conference (ACC), 2011, pp 3892–3898. https://doi.org/10.1109/acc.2011.5991519

  8. Giddey S, Badwal S, Kulkarni A, Munnings C (2012) A comprehensive review of direct carbon fuel cell technology. Prog Energy Combust Sci 38(3):360–399

    Article  Google Scholar 

  9. Mekhilef S, Saidur R, Safari A (2012) Comparative study of different fuel cell technologies. Renew Sustain Energy Rev 16(1):981–989

    Article  Google Scholar 

  10. Nehrir MH, Wang C (2009) Modeling and control of fuel cells: distributed generation applications, vol 41. Wiley, Hoboken

    Book  Google Scholar 

  11. Li X (2005) Principles of fuel cells. Taylor & Francis, London

    Book  Google Scholar 

  12. Larminie J, Dicks A, McDonald MS (2003) Fuel cell systems explained, vol 2. Wiley, New York

    Book  Google Scholar 

  13. Meacham JR, Jabbari F, Brouwer J, Mauzey JL, Samuelsen GS (2006) Analysis of stationary fuel cell dynamic ramping capabilities and ultra capacitor energy storage using high resolution demand data. J Power Sources 156(2):472–479

    Article  Google Scholar 

  14. Thounthong P, Sethakul P (2007) Analysis of a fuel starvation phenomenon of a pem fuel cell. In: Proceedings of the power conversion conference-Nagoya PCC, pp 731–738

  15. Paladini V, Donateo T, De Risi A, Laforgia D (2007) Super-capacitors fuel-cell hybrid electric vehicle optimization and control strategy development. Energy Convers Manag 48(11):3001–3008

    Article  Google Scholar 

  16. Rodatz P, Paganelli G, Sciarretta A, Guzzella L (2005) Optimal power management of an experimental fuel cell/supercapacitor-powered hybrid vehicle. Control Eng Pract 13(1):41–53

    Article  Google Scholar 

  17. Uzunoglu M, Alam M (2007) Dynamic modeling, design and simulation of a pem fuel cell/ultra-capacitor hybrid system for vehicular applications. Energy Convers Manag 48(5):1544–1553

    Article  Google Scholar 

  18. Jiang Z, Gao L, Dougal R et al (2007) Adaptive control strategy for active power sharing in hybrid fuel cell/battery power sources. IEEE Trans Energy Convers 22(2):507–515

    Article  Google Scholar 

  19. Rajashekara K (2005) Hybrid fuel-cell strategies for clean power generation. IEEE Trans Ind Appl 41(3):682–689

    Article  Google Scholar 

  20. Hajizadeh A, Golkar MA (2010) Control of hybrid fuel cell/energy storage distributed generation system against voltage sag. Int J Electr Power Energy Syst 32(5):488–497

    Article  MATH  Google Scholar 

  21. Chao C, Shieh J (2012) A new control strategy for hybrid fuel cell-battery power systems with improved efficiency. Int J Hydrog Energy 37(17):13141–13146

    Article  Google Scholar 

  22. Yan WT, Yang LS, Hong CM, Liang TJ, Chen JF, Yang HT (2008) Fuel cell and battery hybrid supplied power system. In: 2008 international conference on electrical machines and systems, pp 2676–2680

  23. Kraa O, Ghodbane H, Saadi R, Ayad MY, Becherif M, Aboubou A, Bahri M (2015) Energy management of fuel cell/ supercapacitor hybrid source based on linear and sliding mode control. Energy Procedia 74:1258–1264

    Article  Google Scholar 

  24. Amin Bambang RT, Rohman AS, Dronkers CJ, Ortega R, Sasongko A (2014) Energy management of fuel cell/battery/supercapacitor hybrid power sources using model predictive control. IEEE Trans Ind Inform 10(4):1992–2002

    Article  Google Scholar 

  25. Omar H, Mierlo JV, Barrero R, Omar N, Lataire P (2012) PSO algorithm-based optimal power flow control of fuel cell/supercapacitor and fuel cell/battery hybrid electric vehicles. COMPEL Int J Comput Math Electr Electron Eng 32(1):86–107

    Article  Google Scholar 

  26. Uzunoglu M, Alam MS (2008) Modeling and analysis of an FC/UC hybrid vehicular power system using a novel wavelet-based load sharing algorithm. IEEE Trans Energy Convers 23(1):263–272

    Article  Google Scholar 

  27. Bellomare F, Rokni M (2013) Integration of a municipal solid waste gasication plant with solid oxide fuel cell and gas turbine. Renew Energy 55:490–500

    Article  Google Scholar 

  28. Wang C, Nehrir HM (2007) A physically based dynamic model for solid oxide fuel cells. IEEE Trans Energy Convers 22(4):887–897

    Article  Google Scholar 

  29. Ulleberg Ø (2003) Modeling of advanced alkaline electrolyzers: a system simulation approach. Int J Hydrog Energy 28(1):21–33

    Article  Google Scholar 

  30. Artuso P, Gammon R, Orecchini F, Watson SJ (2011) Alkaline electrolysers: model and real data analysis. Int J Hydrog Energy 36(13):7956–7962

    Article  Google Scholar 

  31. Zhou T, Francois B (2009) Modeling and control design of hydrogen production process for an active hydrogen/wind hybrid power system. Int J Hydrog Energy 34(1):21–30

    Article  Google Scholar 

  32. Onar O, Uzunoglu M, Alam M (2008) Modeling, control and simulation of an autonomous wind turbine/photovoltaic/fuel cell/ultra-capacitor hybrid power system. J Power Sources 185(2):1273–1283

    Article  Google Scholar 

  33. Gao L, Jiang Z, Dougal RA (2004) An actively controlled fuel cell/battery hybrid to meet pulsed power demands. J Power Sources 130(1):202–207

    Article  Google Scholar 

  34. Wang L, Singh C (2009) Multicriteria design of hybrid power generation systems based on a modified particle swarm optimization algorithm. IEEE Trans Energy Convers 24(1):163–172

    Article  Google Scholar 

  35. Kim SK, Jeon JH, Cho CH, Ahn JB, Kwon SH (2008) Dynamic modeling and control of a grid-connected hybrid generation system with versatile power transfer. IEEE Trans Ind Electron 55(4):1677–1688

    Article  Google Scholar 

  36. IEEE standard for interconnecting distributed resources with electric power systems. IEEE Std 1547-2003, pp 1–28 (2003). https://doi.org/10.1109/ieeestd.2003.94285

Download references

Acknowledgements

This research work is supported by the National Natural Science Foundation of China (Nos. 51675354 and51377184), the International Science and Technology Cooperation Program of China (No. 2013DFG61520) and the Fundamental Research Funds for the Central Universities (No. 106112016CDJZR158802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Zulqadar Hassan.

Appendix

Appendix

1.1 Electrical Network

\({V_{\mathrm{DC}}}=700\, \hbox {V},\, {V_{L-L,\mathrm{rms}}}=440\, \hbox {V},\, {f}=50\, \hbox {Hz},\, {P_{\mathrm{G,rated}}}=10\,\hbox {MVA}\)

1.2 SOFC

\({P_{\mathrm{rated}}}=50\, \hbox {kW}\), \({T_{\mathrm{FC}}}=1173\, \hbox {K}\), \({N_{\mathrm{cell}}}=325\), \(\hbox {Stack}=4\, \hbox {kW}, \hbox {Array size} =13, {T_d}=5\, \hbox {s}\), \({F}=96484.6\, \hbox {C/mol}\)

1.3 Battery (CINCOFM/BB12100T)

\(\hbox {Capacity}=200\, \hbox {Ah}, \hbox {Voltage/string}=12\, \hbox {V}\), \({N_p}=3, {N_S}=34, {V_{\mathrm{rated}}}=12\times 34=400\, \hbox {V}\)

1.4 SC (Maxwell Technologies BMOD0058)

\({C}=58\, {F}\), \({V_{\max }}=16.2\, \hbox {V}\), \(\hbox {ESR}=22\, \hbox {m} \Omega\), \({I_{\max }}=20 \,\hbox {A}\), \({N_P}=20\), \({I_{\mathrm{leakage}}}=1\,\hbox {m A}\), \({N_S}=6\)

1.5 Electrolyzer (QualeanQL-85000)

\({P_{\mathrm{E,rated}}}=50\, \hbox {kW}\), \({v_\mathrm{o}} =1.038\,\hbox {V}\), \({A_E}=0.25\, {\mathrm{m}^2}\), \(\hbox {c}=2, {N_E}=350, {k_1}=-1.002\, {\mathrm{A}^{-1} \mathrm{m}^2}\), \({k_2}=8.424\, {\mathrm{A}^{-1} \mathrm{m}^2 \,^{\circ }\mathrm{C}}\), \({v_1}=0.185\, \hbox {V}\), \({k_3}=247.3\, {\mathrm{A}^{-1} \mathrm{m}^2 \,^{\circ }\mathrm{C^2}}\), \({r_1}=8.05{\times 10^{-5}\, \Omega \mathrm{m}^2}\),\({r_2}=-2.5{\times 10^{-7}\, \Omega \mathrm{m}^2}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, S.Z., Li, H., Kamal, T. et al. Load Sharing and Arrangement through an Effective Utilization of SOFC/Super-capacitor/Battery in a Hybrid Power System. Iran J Sci Technol Trans Electr Eng 43, 383–396 (2019). https://doi.org/10.1007/s40998-018-0107-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-018-0107-z

Keywords

Navigation