Advertisement

Nonsingular Terminal Sliding-Mode-Based Guidance Law Design with Impact Angle Constraints

  • Xiaojian ZhangEmail author
  • Mingyong Liu
  • Yang Li
Research Paper
  • 41 Downloads

Abstract

This paper discusses the issue of impact angle control of an interceptor against stationary targets. Considering the impact angles problem, guidance laws are derived by using terminal sliding mode and finite-time convergence theory. The sliding mode surface is divided into two parts: singularity and nonsingularity. The singularity issue of the terminal sliding mode surface is tackled with a novel control strategy so that it does not consider the absolute value problem of the sliding mode surface any more. It is shown that the state variables of the autonomous underwater vehicle’s guidance system converge to expected states within finite time under the guidance law we proposed. The autopilot dynamics are also taken into account due to its importance. Theoretical analysis and numerical simulation results are presented to validate the performance of the proposed guidance laws.

Keywords

Guidance laws Impact angle Nonsingular terminal sliding mode Finite-time convergence 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) under Grants 51379176.

References

  1. Bhat SP, Bernstein DS (2000) Finite-time stability of continuous autonomous systems. SIAM J Control Optim 38(3):751–766MathSciNetCrossRefzbMATHGoogle Scholar
  2. De-haia Y, Zuo-eb F, Xian-junb S (2011) Design of a maneuver terminal sliding mode guidance law with impact angle constraints. J Nav Aeronaut Astronaut Univ 5:010Google Scholar
  3. Ding S, Li S, Luo S (2011) Guidance law design based on continuous finite-time control technique. J Astronaut 32(4):727–733Google Scholar
  4. Edwards C, Spurgeon S (1998) Sliding mode control: theory and applications. CRC Press, Boca RatonCrossRefzbMATHGoogle Scholar
  5. Feng Y, Yu X, Han F (2013) On nonsingular terminal sliding-mode control of nonlinear systems. Automatica 49(6):1715–1722MathSciNetCrossRefzbMATHGoogle Scholar
  6. Golestani M, Mohammadzaman I, Vali A (2015) Variable structure finite time guidance law with autopilot lag. Iran J Sci Technol Trans Electr Eng 39:55–66Google Scholar
  7. Kim M, Grider KV (1973) Terminal guidance for impact attitude angle constrained flight trajectories. IEEE Trans Aerosp Electron Syst 6:852–859CrossRefGoogle Scholar
  8. Kim M, Kim Y (2014) Lyapunov-based pursuit guidance law with impact angle constraint. IFAC Proc Vol 47(3):2509–2514MathSciNetCrossRefGoogle Scholar
  9. Kim BS, Lee JG, Han HS (1998) Biased png law for impact with angular constraint. IEEE Trans Aerosp Electron Syst 34(1):277–288CrossRefGoogle Scholar
  10. Lee CH, Kim TH, Tahk MJ (2013a) Interception angle control guidance using proportional navigation with error feedback. J Guid Control Dyn 36(5):1556–1561CrossRefGoogle Scholar
  11. Lee CH, Tahk MJ, Lee JI (2013b) Generalized formulation of weighted optimal guidance laws with impact angle constraint. IEEE Trans Aerosp Electron Syst 49:1317–1322CrossRefGoogle Scholar
  12. Manchester IR, Savkin AV (2006) Circular-navigation-guidance law for precision missile/target engagements. J Guid Control Dyn 29(2):314–320CrossRefGoogle Scholar
  13. Moon J, Kim K, Kim Y (2001) Design of missile guidance law via variable structure control. J Guid Control Dyn 24(4):659–664MathSciNetCrossRefGoogle Scholar
  14. Ratnoo A, Ghose D (2008) Impact angle constrained interception of stationary targets. J Guid Control Dyn 31(6):1817–1822CrossRefGoogle Scholar
  15. Ratnoo A, Ghose D (2009) State-dependent Riccati-equation-based guidance law for impact-angle-constrained trajectories. J Guid Control Dyn 32(1):320–326CrossRefGoogle Scholar
  16. Ratnoo A, Ghose D (2010) Impact angle constrained guidance against nonstationary nonmaneuvering targets. J Guid Control Dyn 33(1):269–275CrossRefGoogle Scholar
  17. Ryoo CK, Cho H, Tahk MJ (2006) Time-to-go weighted optimal guidance with impact angle constraints. IEEE Trans Control Syst Technol 14(3):483–492CrossRefGoogle Scholar
  18. Sabanovic A (2011) Variable structure systems with sliding modes in motion controla survey. IEEE Trans Ind Inform 2(7):212–223CrossRefGoogle Scholar
  19. Siouris G, Leros A (1988) Minimum-time intercept guidance for tactical missiles. Control-Theor Adv Technol 4(1988):251–263MathSciNetGoogle Scholar
  20. Song TL, Shin SJ, Cho H (1999) Impact angle control for planar engagements. IEEE Trans Aerosp Electron Syst 35(4):1439–1444CrossRefGoogle Scholar
  21. Sun S, Zhou D, Hou Wt (2013) A guidance law with finite time convergence accounting for autopilot lag. Aerosp Sci Technol 25(1):132–137CrossRefGoogle Scholar
  22. Tan SC, Lai Y, Tse CK, Cheung MK (2006) Adaptive feedforward and feedback control schemes for sliding mode controlled power converters. IEEE Trans Power Electron 21(1):182–192CrossRefGoogle Scholar
  23. Tan SC, Lai YM, Tse CK (2008) General design issues of sliding-mode controllers in dc–dc converters. IEEE Trans Ind Electron 55(3):1160–1174CrossRefGoogle Scholar
  24. Xiong S, Wang W, Liu X, Wang S, Chen Z (2014) Guidance law against maneuvering targets with intercept angle constraint. ISA Trans 53(4):1332–1342CrossRefGoogle Scholar
  25. Yu X, Kaynak O (2009) Sliding-mode control with soft computing: a survey. IEEE Trans Ind Electron 56(9):3275–3285CrossRefGoogle Scholar
  26. Yu J, Zhang YA, Gu W (2004) An approach to integrated guidance/autopilot design for missiles based on terminal sliding mode control. In: Proceedings of 2004 international conference on machine learning and cybernetics, 2004, vol 1. IEEE, pp 610–615Google Scholar
  27. Yu J, Xu Q, Zhi Y (2011) A TSM control scheme of integrated guidance/autopilot design for UAV. In: 2011 3rd international conference on computer research and development (ICCRD), vol 4. IEEE, pp 431–435Google Scholar
  28. Zhang X, Lei HM, Zeng H, Zhu LZ (2011) A guidance law based on terminal sliding mode. J Ballist 4:002Google Scholar
  29. Zhang Y, Ma G, Liu A (2013) Guidance law with impact time and impact angle constraints. Chin J Aeronaut 26(4):960–966CrossRefGoogle Scholar
  30. Zhou D, Sun S, Teo KL (2009) Guidance laws with finite time convergence. J Guid Control Dyn 32(6):1838–1846CrossRefGoogle Scholar

Copyright information

© Shiraz University 2018

Authors and Affiliations

  1. 1.School of Marine Science and TechnologyNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations