Constant V/f Control and Frequency Control of Isolated Winding Induction Motor Using Nine-Level Three-Phase Inverter

  • Bidyut MahatoEmail author
  • K. C. Jana
  • P. R. Thakura
Research Paper


Modern industrial applications deal with power conversion system with lesser harmonic content for variable voltage and variable frequency application. In this paper, a generalized multilevel inverter has been proposed with nearest level modulation technique. A nine-level asymmetrical inverter of 5 kW has been developed as laboratory prototype and tested with three-phase isolated winding induction motor of rating 1 HP, 200 V, 50 Hz. Unlike any other control technique, the output voltage levels remain fixed at different modulation indexes using nearest level modulation technique, thereby reducing the harmonic content, switching losses and total harmonic distortion. In this paper, a DC–DC converter stage is used to control the DC link voltage of inverter for variable speed application. AC link system (a multiwinding transformer–rectifier) and a closed-loop voltage control technique are used to obtain multiple variable DC voltage sources. A single DC source is used for constant V/f control and frequency control of induction motor, i.e. isolated or open-end winding at above base speed as well as below base speeds. Simulation results of phase voltage of stator terminal, phase current of stator terminal, speed and torque are shown at different speeds. The experimental results of output voltages at different speeds for constant V/f control and frequency control are recorded as well. The experiment is carried out at different stator voltages (or stator frequencies) below and above the rated speed, and a few experimental results are presented. The numbers of inverter voltage levels are always same, and hence, their total harmonic distortion also remains nearly constant at different speeds of operation.


Multilevel inverter Nearest level modulation strategy Induction motor drive Variable DC link voltage DC–DC power conversion 


  1. Abu-rub H, Holtz J, Rodriguez J, Baoming G (2010) Medium-voltage multilevel converters—State of the art, challenges, and requirements in industrial applications. IEEE Trans Ind Electron 57(8):2581–2596CrossRefGoogle Scholar
  2. Al-Othman AK, Abdelhamid TH (2009) Elimination of harmonics in multilevel inverters with non-equal dc sources using PSO. Energy Convers Manag 50(3):756–764CrossRefGoogle Scholar
  3. Babaei E, Moeinian MS (2010) Asymmetric cascaded multilevel inverter with charge balance control of a low resolution symmetric subsystem. Energy Convers Manag 51(11):2272–2278CrossRefGoogle Scholar
  4. Banaei MR, Salary E (2011) New multilevel inverter with reduction of switches and gate driver. Energy Convers Manag 52(2):1129–1136CrossRefGoogle Scholar
  5. Bhuvaneswari G, Nagaraju (2005) Multi-level inverters—a comparative study. IETE J Res 51(2):141–153. CrossRefGoogle Scholar
  6. Boby M, Pramanick S, Kaarthik RS, Rahul SA, Gopakumar K, Umanand L (2016) Multilevel dodecagonal voltage space vector structure generation for open-end winding IM using a single DC source. IEEE Trans Ind Electron 63(5):2757–2765CrossRefGoogle Scholar
  7. Cheng Y, Qian C, Crow ML, Pekarek S, Atcitty S (2006) A comparison of diode-clamped and cascaded multilevel converters for a STATCOM with energy storage. IEEE Trans Ind Electron 53(5):1512–1521CrossRefGoogle Scholar
  8. Chowdhury S, Wheeler P, Patel C, Gerada C (2016) A multi-level converter with a floating bridge for open-ended winding motor drive applications. IEEE Trans Ind Electron 63(9):5366–5375CrossRefGoogle Scholar
  9. Colak I, Kabalci E, Bayindir R (2011) Review of multilevel voltage source inverter topologies and control schemes. Energy Convers Manag 52(2):1114–1128CrossRefGoogle Scholar
  10. Dahidah MSA, Konstantinou G, Agelidis VG (2015) A review of multilevel selective harmonic elimination PWM: formulations, solving algorithms, implementation and applications. IEEE Trans Power Electron 30(8):4091–4106CrossRefGoogle Scholar
  11. Deng Y, Harley RG (2015) Space-vector versus nearest-level pulse width modulation for multilevel converters. IEEE Trans Power Electron 30(6):2962–2974CrossRefGoogle Scholar
  12. Dixon J, Morán L (2005) A clean four-quadrant sinusoidal power rectifier using multistage converters for subway applications. IEEE Trans Ind Electron 52(2):653–661CrossRefGoogle Scholar
  13. Dixon J, Pereda J, Castillo C, Bosch S (2010) Asymmetrical multilevel inverter for traction drives using only one DC supply. IEEE Trans Veh Technol 59(8):3736–3743CrossRefGoogle Scholar
  14. Edpuganti A, Rathore AK (2015) New optimal pulsewidth modulation for single DC-link dual inverter fed open-end stator winding induction motor drives. IEEE Trans Ind Electron 30(8):4386–4393Google Scholar
  15. Franquelo LG, Rodriguez J, Leon JI, Kouro S, Portillo R, Prats MAM (2008) The age of multilevel converters arrives. IEEE Ind Electron Mag 2(2):28–39CrossRefGoogle Scholar
  16. Hosseinzadeh MA, Farhadi KM, Babaei E (2013) Asymmetrical multilevel converter topology with reduced number of components. IET Power Electron 6(6):1188–1196CrossRefGoogle Scholar
  17. Hu P, Jiang D (2015) A level-increased nearest level modulation method for modular multilevel converters. IEEE Trans Power Electron 30(4):1836–1842CrossRefGoogle Scholar
  18. Jana KC, Biswas SK (2015) Generalised switching scheme for a space vector pulse-width modulation-based N-level inverter with reduced switching frequency and harmonics. IET Power Electron 8(12):2377–2385CrossRefGoogle Scholar
  19. Jana KC, Biswas S, Chowdhury SK (2016) Dual reference phase shifted PWM technique for a N-level inverter based grid connected solar photovoltaic system. IET Renew Power Gener 10(7):928–935CrossRefGoogle Scholar
  20. Krug D, Bernet S, Fazel SS, Jalili K, Malinowski M (2007) Comparison of 2.3-kV medium-voltage multilevel converters for industrial medium-voltage drives. IEEE Trans Ind Electron 54(6):2979–2992CrossRefGoogle Scholar
  21. Lai JS, Peng FZ (1996) Multilevel converters—a new breed of power converters. IEEE Trans Ind Appl 32(3):509–517CrossRefGoogle Scholar
  22. Lezana P, Ortiz G (2009) Extended operation of cascade multicell converters under fault condition. IEEE Trans Ind Electron 56(7):2697–2703CrossRefGoogle Scholar
  23. Li W, He X, Hu J et al (2016) Common-mode voltage injection-based nearest level modulation with loss reduction for modular multilevel converters. IET Renew Power Gener 10(6):798–806CrossRefGoogle Scholar
  24. Lu S, Mariéthoz S, Corzine KA (2010) Asymmetrical cascade multilevel converters with noninteger or dynamically changing DC voltage ratios: concepts and modulation techniques. IEEE Trans Ind Electron 57(7):2411–2418CrossRefGoogle Scholar
  25. Luo H, Wang Q, Deng X, Wan S (2006) A novel V/f scalar controlled induction motor drives with compensation based on decoupled stator current. In: Proceedings of the IEEE international conference on industrial technology, pp 1989–1994Google Scholar
  26. Mahato B, Thakura PR, Jana KC (2014) Hardware design and implementation of unity power factor rectifiers using microcontrollers. In: IEEE 6th India international conference on power electronics, India, pp 1–5Google Scholar
  27. McGrath BP, Holmes DG (2002) Multicarrier PWM strategies for multilevel inverters. IEEE Trans Ind Electron 49(4):858–867CrossRefGoogle Scholar
  28. Malekjamshidi Z, Jafari M, Islam R, Zhu J, Member, S (2014) A comparative study on characteristics of major topologies of voltage source multilevel inverters. In: Innovative smart grid technologies—Asia (ISGT Asia), pp 612–617Google Scholar
  29. Meshram PM, Borghate VB (2015) A simplified nearest level control (NLC) voltage balancing method for modular multilevel converter (MMC). IEEE Trans Power Electron 30(1):450–462CrossRefGoogle Scholar
  30. Naderi R, Rahmati A (2008) Phase-shifted carrier PWM technique for general cascaded inverters. IEEE Trans Power Electron 23(3):1257–1269CrossRefGoogle Scholar
  31. Perez M, Rodriguez J, Pontt J, Kouro S (2007) Power distribution in hybrid multi-cell converter with nearest level modulation. In: IEEE international symposium industrial electronics, pp 736–741Google Scholar
  32. Pramanick S, Azeez NA, Kaarthik RS, Gopakumar K, Cecati C (2015) Low-order harmonic suppression for open-end winding IM with dodecagonal space vector using a single DC-link supply. IEEE Trans Ind Electron 62(9):5340–5347CrossRefGoogle Scholar
  33. Rathore A, Edpuganti A (2015) Optimal low switching frequency pulsewidth modulation of nine-level cascade inverter. IEEE Trans Power Electron 30(1):482–495CrossRefGoogle Scholar
  34. Rech C, Pinheiro JR (2007) Hybrid multilevel converters: unified analysis and design considerations. IEEE Trans Ind Electron 54(2):1092–1104CrossRefGoogle Scholar
  35. Rodríguez J, Lai JS, Peng FZ (2002) Multilevel inverters: a survey of topologies, controls, and applications. IEEE Trans Ind Electron 49(4):724–738CrossRefGoogle Scholar
  36. Rodríguez J, Bernet S, Wu B, Pontt JO, Kouro S (2007) Multilevel voltage-source-converter topologies for industrial medium-voltage drives. IEEE Trans Ind Electron 54(6):2930–2945CrossRefGoogle Scholar
  37. Rodríguez J, Franquelo LG, Kouro S, Leon JI, Portillo RC, Prats MAM, Perez MA (2009) Multilevel Converters: an enabling technology for high-power applications. Proc IEEE 97(11):1786–1817CrossRefGoogle Scholar
  38. Ruiz-Caballero D, Martinez L, Ramos AR, Mussa SA (2009) New asymmetrical hybrid multilevel voltage inverter. In: Brazilian power electron conference, pp 354–361Google Scholar
  39. Son GT, Lee HJ, Nam TS et al (2012) Design and control of a modular multilevel HVDC converter with redundant power modules for noninterruptible energy transfer. IEEE Trans Power Deliv 27(3):1611–1619CrossRefGoogle Scholar
  40. Sudharshan KR, Gopakumar K, Mathew J, Undeland T (2015) Medium-voltage drive for induction machine with multileveldodecagonal voltage space vectors with symmetric triangles. IEEE Trans Ind Electron 62(1):79–87CrossRefGoogle Scholar
  41. Sudheer P, Prasad KRS (2014) H-bridge multi level under different loads. Int J Sci Res Publ 4(5):1–5Google Scholar
  42. Vazquez S, Leon JI, Franquelo LG, Padilla JJ, Carrasco JM (2009) DC-voltage-ratio control strategy for multilevel cascaded converters fed with a single DC source. IEEE Trans Ind Electron 56(7):2513–2521CrossRefGoogle Scholar
  43. Wang C-C, Fang C-H (2003) Sensorless scalar-controlled induction motor drives with modified flux observer. IEEE Trans EnergyConvers 18(2):181–186Google Scholar
  44. Wen J, Smedley KM (2008) Synthesis of multilevel converters based on single- and/or three-phase converter building blocks. IEEE Trans Power Electron 23(3):1247–1256CrossRefGoogle Scholar
  45. Xiong C-L, Feng X-Y, Diao F, Wu X-J (2016) Improved nearest level modulation for cascaded H-bridge converter. Electron Lett 52(8):648–650CrossRefGoogle Scholar

Copyright information

© Shiraz University 2018

Authors and Affiliations

  1. 1.Indian Institute of Technology (Indian School of Mines)DhanbadIndia
  2. 2.Birla Institute of TechnologyMesraIndia

Personalised recommendations