Advertisement

An Online Subspace Denoising Algorithm for Maternal ECG Removal from Fetal ECG Signals

  • Marzieh Fatemi
  • Reza Sameni
Research Paper

Abstract

Noninvasive extraction of the fetal electrocardiogram (fECG) from multichannel maternal abdomen recordings is an emerging technology used for fetal cardiac monitoring and diagnosis. The strongest interference for the fECG is the maternal ECG (mECG), which is not always removed through conventional methods, including blind source separation, especially for low-rank abdominal recordings. In this work, we address the problem of maternal cardiac signal removal and introduce an online subspace denoising procedure customized for mECG cancellation. The proposed method is a general online denoising framework, which can be used for the extraction of a signal subspace from noisy multichannel observations in low signal-to-noise ratios, using suitable prior information of the signal and/or noise. The method is fairly generic and may also be useful for the separation of other signals and noises. The performance of the proposed technique is evaluated on both real and synthetic data and benchmarked versus state-of-the-art methods.

Keywords

Online subspace denoising Semi-blind source separation Maternal ECG cancellation Noninvasive fetal ECG extraction Online generalized eigenvalue decomposition 

References

  1. Amini L, Sameni R, Jutten C, Hossein-Zadeh G, Soltanian-Zadeh H (2008) MR artifact reduction in the simultaneous acquisition of EEG and fMRI of epileptic patients. In: EUSIPCO2008—16th European signal processing conference, Lausanne, Switzerland, August 25–29, 2008Google Scholar
  2. Bergveld P, Meijer WJH (1981) A new technique for the suppression of the MECG. IEEE Trans Biomed Eng BME-28(4):348–354CrossRefGoogle Scholar
  3. Biglari H, Sameni R (2016) Fetal motion estimation from noninvasive cardiac signal recordings. Physiol Meas 37(11):2003–2023CrossRefGoogle Scholar
  4. Cardoso J-F (1998) Multidimensional independent component analysis. In: Proceedings of the IEEE international conference on acoustics, speech, and signal processing (ICASSP ’98), vol 4, pp 1941–1944, May 1998Google Scholar
  5. de Lathauwer L, de Moor B, Vandewalle J (2000) Fetal electrocardiogram extraction by blind source subspace separation. IEEE Trans Biomed Eng 47(5):567–572CrossRefGoogle Scholar
  6. De Moor B (1997) Database for the identification of systems (DaISy) [Online]. http://homes.esat.kuleuven.be/ smc/daisy/
  7. Edenbrandt L, Pahlm O (1988) Vectorcardiogram synthesized from a 12-lead ECG: superiority of the inverse Dower matrix. J Electrocardiol 21:361CrossRefGoogle Scholar
  8. Fatemi M, Niknazar M, Sameni R (2013) A robust framework for noninvasive extraction of fetal electrocardiogram signals. In: Computing in cardiology conference (CinC), 2013, pp 201–204Google Scholar
  9. Geselowitz DB (1989) On the theory of the electrocardiogram. Proc IEEE 77:857–876CrossRefGoogle Scholar
  10. Gouy-Pailler C, Sameni R, Congedo M, Jutten C (2009) Iterative subspace decomposition for ocular artifact removal from EEG recordings. In: Proceedings of the 8th international conference on independent component (ICA 2009), Paraty, Brazil, pp 419–426Google Scholar
  11. Graupe D, Zhong Y, Graupe MH (2007) Extracting fetal from maternal ecg for early diagnosis: theoretical problems and solutions—baf and ica. In: Proceedings of the fifth IASTED international conference: biomedical engineering, ser. BIEN ’07. Anaheim, CA, USA: ACTA Press, pp 352–356Google Scholar
  12. Haykin S (1996) Adaptive filter theory. Prentice-Hall information and system sciences series. Prentice Hall, Upper Saddle RiverGoogle Scholar
  13. Hyvärinen A, Karhunen J, Oja E (2001) Independent component analysis. Wiley-Interscience, New YorkCrossRefGoogle Scholar
  14. Lee JA, Verleysen M (2007) Nonlinear dimensionality reduction. Springer Science, BerlinGoogle Scholar
  15. Martens SMM, Rabotti C, Mischi M, Sluijter RJ (2007) A robust fetal ECG detection method for abdominal recordings. Physiol Meas 28(4):373–388CrossRefGoogle Scholar
  16. McSharry PE, Clifford GD, Tarassenko L, Smith LA (2003) A dynamic model for generating synthetic electrocardiogram signals. IEEE Trans Biomed Eng 50:289–294CrossRefGoogle Scholar
  17. Nadakuditi R, Edelman A (2008) Sample eigenvalue based detection of high-dimensional signals in white noise using relatively few samples. IEEE Trans Signal Process 56(7):2625–2638MathSciNetCrossRefGoogle Scholar
  18. Ramoser H, Muller-Gerking J, Pfurtscheller G (2000) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 8(4):441–446CrossRefGoogle Scholar
  19. Sameni R (2008) Extraction of fetal cardiac signals from an array of maternal abdominal recordings. Ph.D. dissertation, Sharif University of Technology—Institut National Polytechnique de Grenoble, July 2008Google Scholar
  20. Sameni R (2010) The open-source electrophysiological toolbox (OSET), version 2.1 [Online]. http://www.oset.ir
  21. Sameni R (2017) Online filtering using piecewise smoothness priors: application to normal and abnormal electrocardiogram denoising. Signal Process 133:52–63CrossRefGoogle Scholar
  22. Sameni R, Clifford GD (2010) A review of fetal ECG signal processing; issues and promising directions. Open Pacing Electrophysiol Ther J (TOPETJ) 3:4–20Google Scholar
  23. Sameni R, Gouy-Pailler C (2014) An iterative subspace denoising algorithm for removing electroencephalogram ocular artifacts. J Neurosci Methods 225(3):97–105CrossRefGoogle Scholar
  24. Sameni R, Jutten C, Shamsollahi MB (2006) What ICA provides for ECG processing: application to noninvasive fetal ECG extraction. In: Proceedings of the international symposium on signal processing and information technology (ISSPIT’06), Vancouver, Canada, August 2006, pp 656–661Google Scholar
  25. Sameni R, Clifford GD, Jutten C, Shamsollahi MB (2007a) Multichannel ECG and noise modeling: application to maternal and fetal ECG signals. EURASIP J Adv Signal Process 2007. Article ID 43 407. doi: 10.1155/2007/43407. ISSN 1687-6172
  26. Sameni R, Shamsollahi MB, Jutten C, Clifford GD (2007b) A nonlinear Bayesian filtering framework for ECG denoising. IEEE Trans Biomed Eng 54(12):2172–2185CrossRefzbMATHGoogle Scholar
  27. Sameni R, Jutten C, Shamsollahi MB (2008a) Multichannel electrocardiogram decomposition using periodic component analysis. IEEE Trans Biomed Eng 55(8):1935–1940CrossRefGoogle Scholar
  28. Sameni R, Shamsollahi MB, Jutten C (2008b) Model-based Bayesian filtering of cardiac contaminants from biomedical recordings. Physiol Meas 29(5):595–613CrossRefGoogle Scholar
  29. Sameni R, Jutten C, Shamsollahi MB (2010a) A deflation procedure for subspace decomposition. IEEE Trans Signal Process 58(4):2363–2374MathSciNetCrossRefGoogle Scholar
  30. Sameni R, Jutten C, Shamsollahi M, Clifford G (2010b) Extraction of fetal cardiac signals. U.S. Patent US 2010/0 137 727 A1, June 3, 2010Google Scholar
  31. Strobach P, Abraham-Fuchs K, Harer W (1994) Event-synchronous cancellation of the heart interference in biomedical signals. IEEE Trans Biomed Eng 41(4):343–350CrossRefGoogle Scholar
  32. Swarnalath R, Prasad DV (2010) A novel technique for extraction of FECG using multi stage adaptive filtering. J Appl Sci 10(4):319–324CrossRefGoogle Scholar
  33. Ungureanu M, Wolf W (2006) Basic aspects concerning the event-synchronous interference canceller. IEEE Trans Biomed Eng 53(11):2240–2247CrossRefGoogle Scholar
  34. Widrow B, Glover J, McCool J, Kaunitz J, Williams C, Hearn H, Zeidler J, Dong E, Goodlin R (1975) Adaptive noise cancelling: principles and applications. Proc IEEE 63(12):1692–1716CrossRefGoogle Scholar
  35. Yang B (1995) Projection approximation subspace tracking. IEEE Trans Signal Process 43(1):95–107CrossRefGoogle Scholar
  36. Zarzoso V, Nandi A (2001) Noninvasive fetal electrocardiogram extraction: blind separation versus adaptive noise cancellation. IEEE Trans Biomed Eng 48(1):12–18CrossRefGoogle Scholar
  37. Zhao Q, Zhang L, Cichocki A, Li J (2008) Incremental common spatial pattern algorithm for BCI. In: (IEEE World Congress on Computational Intelligence). IEEE international joint conference on neural networks, 2008. IJCNN 2008, June 2008, pp 2656–2659Google Scholar

Copyright information

© Shiraz University 2017

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringShiraz UniversityShirazIran

Personalised recommendations