Advertisement

Assessment of Minimal Fatigue Crack Growth Rate After a Single Overload in D16chT Alloy

  • Yuriy Pyndus
  • Oleh Yasniy
  • Vasyl Fostyk
  • Pavlo Maruschak
Research Paper
  • 60 Downloads

Abstract

The paper presents a technique for estimation of minimal fatigue crack growth (FCG) rate after the single overloads by tension in D16chT aluminum alloy. The function of FCG rate decreasing depending on overload factor and stress ratio was proposed. This function is based on Walker equation for determining of FCG rate under constant amplitude cyclic loading and retarding part. Proposed phenomenological equation enables the minimal FCG rate to be predicted after a single overload taking into account overload factor and stress ratio in D16chT alloy. Good enough agreement of calculation results and testing data of minimal FCG rates after a single overload was shown graphically.

Keywords

Fatigue Crack Single overload Retardation Minimal crack growth rate 

References

  1. Beden SM, Abdullah S, Ariffin AK (2009) Review of fatigue crack propagation models for metallic components. Eur J Sci Res 28(3):364–397Google Scholar
  2. Borrego LP, Ferreira JM, Da Cruz JP, Costa JM (2003) Evaluation of overload effects on fatigue crack growth and closure. Eng Fract Mech 70(11):1379–1397CrossRefGoogle Scholar
  3. Dai P, Li S, Li Z (2013) The effects of overload on the fatigue crack growth in ductile materials predicted by plasticity-corrected stress intensity factor. Eng Fract Mech 111:26–37CrossRefGoogle Scholar
  4. Harmain GA (2010) A model for predicting the retardation effect following a single overload. Theor Appl Fract Mech 53(1):80–88CrossRefGoogle Scholar
  5. Huang X, Torgeir M, Cui W (2008) An engineering model of fatigue crack growth under variable amplitude loading. Int J Fatigue 30(1):2–10CrossRefGoogle Scholar
  6. Ignatovich SR, Menou A, Karuskevich MV, Maruschak PO (2013) Fatigue damage and sensor development for aircraft structural health monitoring. Theor Appl Fract Mech 65:23–27CrossRefGoogle Scholar
  7. Kim J-K, Shim D-S (2003) A statistical approach for predicting the crack retardation due to a single tensile overload. Int J Fatigue 25:335–342CrossRefGoogle Scholar
  8. Lassen T, Récho N (2006) Fatigue life analyses of welded structures: flaws. Wiley, London, p 407Google Scholar
  9. Machnievicz T (2013) Fatigue crack growth prediction models for metallic materials. Fatigue Fract Eng Mater Struct 36(4):293–307CrossRefGoogle Scholar
  10. Mehrzadi M, Taheri F (2013) A material sensitive modified wheeler model for predicting the retardation in fatigue response of AM60B due to an overload. Int J Fatigue 55:220–229CrossRefGoogle Scholar
  11. Murakami Y (1987) Stress intensity factors handbook, vol 2. Pergamon Press, Oxford, p 1456Google Scholar
  12. Ribeiro AS, Jesus AP, Costa JM, Borrego LP, Maeiro JC (2011) Variable amplitude fatigue crack growth modelling. Mecânica Exp 19:33–44Google Scholar
  13. Sarkheil S, Foumani MS (2014) Numerical and experimental study on the optimization of overload parameters for the increase of fatigue life. Aerosp Sci Technol 35:80–86CrossRefGoogle Scholar
  14. Schijve J (1996) Fatigue crack growth under variable-amplitude loading, ASM Handbook, 19. ASM International, pp 110–133Google Scholar
  15. Skorupa M (1998) Load interaction effects during fatigue crack growth under variable amplitude loading—a literature review. Part I: empirical trends. Fatigue Fract Eng Mater Struct 21(8):987–1006CrossRefGoogle Scholar
  16. Skorupa M (1999) Load interaction effects during fatigue crack growth under variable amplitude loading—a literature review. Part II: qualitative interpretation. Fatigue Fract Eng Mater Struct 22(10):905–926CrossRefGoogle Scholar
  17. Theil N (2016) Fatigue life prediction method for the practical engineering use taking in account the effect of the overload blocks. Int J Fatigue 90:23–35CrossRefGoogle Scholar
  18. Varfolomeev IV, Yasnii OP (2008) Modeling of fracture of cracked structural elements with the use of probabilistic methods. Mater Sci 44(1):87–96CrossRefGoogle Scholar
  19. Wheeler OE (1972) Spectrum loading and crack growth. J Fluids Eng 94(1):181–186Google Scholar
  20. Willenborg J, Engle RM, Wood HA (1971) A crack growth retardation model using an effective stress concept (No. AFFDL-TM-71-1-FBR), Air Force Flight Dynamics Lab Wright-Patterson AFB OHGoogle Scholar
  21. Yasnii PV, Pyndus YuI (2002) Effect of single overloading on the propagation of fatigue cracks in D16T alloy. Mater Sci 38(2):225–229CrossRefGoogle Scholar
  22. Yasnii PV, Konovalenko IV, Marushchak PO (2009) Automated evaluation of strain fields by the coordinate-grid method. Mater Sci 45(2):291–298CrossRefGoogle Scholar
  23. Yasnii PV, Hlad’o SV, Skochylyas VV, Semenets’ OI (2014) Formation of residual stresses in plates with functional holes after cold expansion. Mater Sci 50(6):877–881CrossRefGoogle Scholar
  24. Yasniy O, Maruschak P, Lapusta Y (2011) Probabilistic modeling of surface crack growth in a roll of continuous casting machine. Int J Fract 172:113–120CrossRefGoogle Scholar

Copyright information

© Shiraz University 2017

Authors and Affiliations

  • Yuriy Pyndus
    • 1
  • Oleh Yasniy
    • 1
  • Vasyl Fostyk
    • 1
  • Pavlo Maruschak
    • 1
  1. 1.Ternopil National Ivan Pul’uj Technical UniversityTernopilUkraine

Personalised recommendations