Left Ideal Preserving Maps on Triangular Algebras

  • Hoger GhahramaniEmail author
Research Paper
Part of the following topical collections:
  1. Mathematics


Let \({\mathcal {A}}\), \({\mathcal {B}}\) be unital algebras, \({\mathcal {M}}\) be an \(({\mathcal {A}},{\mathcal {B}})\)-bimodule and \({\mathcal {T}}=\begin{pmatrix} {\mathcal {A}}&{} {\mathcal {M}}\\ 0 &{} {\mathcal {B}}\end{pmatrix}\) be the corresponding unital triangular algebra over a commutative unital ring \({\mathcal {R}}\). In this paper, we study whether every \({\mathcal {R}}\)-linear map on \({\mathcal {T}}\) that leaves invariant every left ideal of \({\mathcal {T}}\) is a left multiplier, and give some necessary or sufficient conditions for a triangular algebra to have this property. We also give various examples illustrating limitations on extending some of the theory developed. We then apply our established results to generalized triangular matrix algebras and block upper triangular matrix algebras. Moreover, we introduce some algebras other than triangular algebras on which every \({\mathcal {R}}\)-linear map is a left multiplier.


Left multiplier Local left multiplier Left ideal preserving Triangular algebra Generalized triangular matrix algebras Block upper triangular matrix algebras 

Mathematics Subject Classification

15A86 16S50 16D99 16S99 



The author thanks the referee and Professor M. N. Ghosseiri for careful reading of the manuscript and for helpful suggestions.


  1. An R, Hou J (2009) Characterizations of derivations on triangular rings: additive maps derivable at idempotents. Linear Algebra Appl 431:1070–1080MathSciNetCrossRefGoogle Scholar
  2. Benkovič D, Eremita D (2004) Commuting traces and commmutativity preserving maps on triangular algebras. J Algebra 280:797–824MathSciNetCrossRefGoogle Scholar
  3. Birkenmeier GF (1983) Idempotents and completely semiprime ideals. Commun Algebra 11:567–580MathSciNetCrossRefGoogle Scholar
  4. Birkenmeier GF, Heatherly HE, Kim JY, Park JK (2000) Triangular matrix representations. J Algebra 230:558–595MathSciNetCrossRefGoogle Scholar
  5. Bresar M (2007) Characterizing homomorphisms, derivations and multipliers in rings with idempotents. Proc R Soc Edinb Sect A 137:9–21MathSciNetCrossRefGoogle Scholar
  6. Brešar M (2012) Multiplication algebra and maps determined by zero products. Linear Multilinear Algebra 60:763–768MathSciNetCrossRefGoogle Scholar
  7. Brešar M, Šemrl P (1993) Mappings which preserve idempotents, local automorphisms, and local derivations. Can J Math 45:483–496MathSciNetCrossRefGoogle Scholar
  8. Brešar M, Grašić M, Ortega JS (2009) Zero product determined matrix algebras. Linear Algebra Appl 430:1486–1498MathSciNetCrossRefGoogle Scholar
  9. Chase SU (1961) A generalization of the ring of triangular matrices. Nagoya Math J 18:13–25MathSciNetCrossRefGoogle Scholar
  10. Fuller KR, Nicholson WK, Watters JF (1989) Reflexive bimodules. Can J Math 41:592–611MathSciNetCrossRefGoogle Scholar
  11. Fuller KR, Nicholson WK, Watters JF (1991) Universally reflexive algebras. Linear Algebra Appl 157:195–201MathSciNetCrossRefGoogle Scholar
  12. Fuller KR, Nicholson WK, Watters JF (1995) Algebras whose projective modules are reflexive. J Pure Appl Algebra 98:135–150MathSciNetCrossRefGoogle Scholar
  13. Ghahramani H (2013a) Zero product determined triangular algebras. Linear Multilinear Algebra 61:741–757MathSciNetCrossRefGoogle Scholar
  14. Ghahramani H (2013b) On rings determined by zero products. J Algebra Appl 12:1–15MathSciNetCrossRefGoogle Scholar
  15. Ghahramani H (2014) On derivations and Jordan derivations through zero products. Oper Matrices 8:759–771MathSciNetCrossRefGoogle Scholar
  16. Hadwin DW (1983) Algebraically reflexive linear transformations. Linear Multilinear Algebra 14:225–233MathSciNetCrossRefGoogle Scholar
  17. Hadwin DW, Kerr JW (1988) Scalar-reflexive rings. PAMS 103:l-7MathSciNetCrossRefGoogle Scholar
  18. Hadwin DW, Kerr JW (1989) Scalar-reflexive rings II. J Algebra 125:311–319MathSciNetCrossRefGoogle Scholar
  19. Hadwin D, Kerr J (1997) Local multiplications on algebras. J Pure Appl Algebra 115:231–239MathSciNetCrossRefGoogle Scholar
  20. Hadwin D, Li J (2004) Local derivations and local automorphisms. J Math Anal Appl 290:702–714MathSciNetCrossRefGoogle Scholar
  21. Hadwin D, Li J (2008) Local derivations and local automorphisms on some algebras. J Oper Theory 60:29–44MathSciNetzbMATHGoogle Scholar
  22. Johnson BE (1968) Centralisers and operators reduced by maximal ideals. J Lond Math Soc 43:231–233MathSciNetCrossRefGoogle Scholar
  23. Katsoulis E (2016) Local maps and the representation theory of operator algebras. Trans Am Math 368:5377–5397MathSciNetCrossRefGoogle Scholar
  24. Li J, Pan Z (2010) Annihilator-preserving maps, multipliers, and derivations. Linear Algebra Appl 432:5–13MathSciNetCrossRefGoogle Scholar
  25. Liu D, Zhang JH (2016) Jordan higher derivable maps on triangular algebras by commutative zero products. Acta Math Sin (English series) 32:258–264MathSciNetCrossRefGoogle Scholar
  26. Snashall N (1992) Two questions on scalar-reflexive rings. Proc Am Math Soc 116:921–927MathSciNetCrossRefGoogle Scholar
  27. Snashall N (1993) Alglat for modules over FSI rings. J Algebra 158(1):130–148MathSciNetCrossRefGoogle Scholar
  28. Snashall N (1994) Scalar-reflexivity and FGC rings. J Algebra 165(2):380–388MathSciNetCrossRefGoogle Scholar
  29. The Hadwin Lunch Bunch (1994) Local multiplications on algebras spanned by idempotents. Linear Multilinear Algebra 37:259–263MathSciNetCrossRefGoogle Scholar
  30. Zhang JH, Yang AL, Pan FF (2006) Linear maps preserving zero products on nest subalgebras of von Neumann algebras. Linear Algebra Appl 412:348–361MathSciNetCrossRefGoogle Scholar
  31. Zhao S, Zhu J (2010) Jordan all-derivable points in the algebra of all upper triangular matrices. Linear Algebra Appl 433:1922–1938MathSciNetCrossRefGoogle Scholar

Copyright information

© Shiraz University 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of KurdistanSanandajIran

Personalised recommendations