Advertisement

Polypropylene Copolymer/Calcium Silicate Composites with Enhanced Mechanical Properties and Scratch Resistance

  • Nawadon PetchwattanaEmail author
  • Pichamon Ongsritrakul
  • Sirijutaratana Covavisaruch
  • Borwon Narupai
  • Jakkid Sanetuntikul
Research Paper
  • 22 Downloads
Part of the following topical collections:
  1. Chemistry

Abstract

In this study, calcium silicate was added as an inorganic filler to promote mechanical strength and scratch resistance in polypropylene (PP). Scratch measurements in the form of scratch depth, scratch width and scratch hardness indicated that adding 10 wt% calcium silicate showed the best performance of scratch resistance together with the maximum hardness and degree of crystallinity. Beyond this concentration, the composites exhibited scratches with greater depth, while the width of all scratches in composites remained close to that observed in neat PP. In summary, calcium silicate was found to be effective in resisting the scratches at only low applied load.

Keywords

Polymer matrix composites Scratch resistance Thermal properties Mechanical properties 

Notes

Acknowledgements

The authors would like to thank Srinakharinwirot University for a research funding (Contract No. 484/2559). Acknowledgements are extended to the Grand Siam Composites Co. Ltd., Thailand, for the generous provision of materials and the use of facilities.

References

  1. Chafidz A, Kaavessina M, Al-Zahrani S, Al-Otaibi MN (2016) Rheological and mechanical properties of polypropylene/calcium carbonate nanocomposites prepared from masterbatch. J Thermoplast Compos Mater 29:593–622CrossRefGoogle Scholar
  2. Chow WS, Leu YY, Mohd Ishak ZA (2012) Effects of SEBS-g-MAH on the properties of injection moulded poly(lactic acid)/nano-calcium carbonate composites. Express Polym Lett 6:503–510CrossRefGoogle Scholar
  3. Chu J, Xiang C, Sue HJ, Hollis RD (2000) Scratch resistance of mineral-filled polypropylene materials. Polym Eng Sci 40:944–955CrossRefGoogle Scholar
  4. El-Midany AA, Ibrahim SS (2010) The effect of mineral surface nature on the mechanical properties of mineral-filled polypropylene composites. Polym Bull 64:387–399CrossRefGoogle Scholar
  5. Essabir H, Bensalah MO, Rodrigue D, Bouhfida R, Qaiss A (2017a) A comparison between bio- and mineral calcium carbonate on the properties of polypropylene composites. Constr Build Mater 134:549–555CrossRefGoogle Scholar
  6. Essabir H, Nekhlaoui S, Bensalah MO, Rodrigue D, Bouhfid R, Qaiss A (2017b) Phosphogypsum waste used as reinforcing fillers in polypropylene based composites: structural, mechanical and thermal properties. J Polym Environ 25:658–666CrossRefGoogle Scholar
  7. Fu S, Yu B, Tang W, Fan M, Chen F, Fu Q (2018) Mechanical properties of polypropylene composites reinforced by hydrolyzed and microfibrillated Kevlar fibers. Compos Sci Technol 163:141–150CrossRefGoogle Scholar
  8. Hardinnawirda K, Siti Rabiatull Aisha I (2012) Effect of rice husks as filler in polymer matrix composites. J Mech Eng Sci 2:181–186CrossRefGoogle Scholar
  9. Ismail H, Tan BK, Suharty SN, Husseinsyah S (2015) Comparison of the effects of palm oil ash, carbon black and halloysite nanotubes on the properties of polypropylene/recycled natural rubber glove composites. J Phys Sci 26:89–99Google Scholar
  10. Karmarkar A, Chauhan SS, Modak JM, Chanda M (2007) Mechanical properties of wood–fiber reinforced polypropylene composites: effect of a novel compatibilizer with isocyanate functional group. Compos Part A Appl Sci Manuf 38:227–233CrossRefGoogle Scholar
  11. Kumar R, Haq MIU, Raina A, Anand A (2018) Industrial applications of natural fibre-reinforced polymer composites – challenges and opportunities. Int J Sustain Eng 12(3):212–220CrossRefGoogle Scholar
  12. Linares PB, Castillo LA, Barbosa SE (2019) Pro-degradant effect of talc nanoparticles on polypropylene films. J Polym Environ 27(8):1666–1676CrossRefGoogle Scholar
  13. Luyt AS, Dramicanin MD, Antic Z, Djokovic V (2009) Morphology, mechanical and thermal properties of composites of polypropylene and nanostructured wollastonite filler. Polym Test 28:348–356CrossRefGoogle Scholar
  14. Mestres do Nascimento E, Eiras D, Pessan LA (2016) Effect of thermal treatment on impact resistance and mechanical properties of polypropylene/calcium carbonate nanocomposites. Compos Part B Eng 91:228–234CrossRefGoogle Scholar
  15. Papayanopolos HS, Morales AB, Lozano T, Laria J, Sanchez S, Rodriguez F, Martinez G, Cerino F (2014) Improvement of toughness properties of polypropylene/wollastonite composites using an interface modifier. Polym Compos 35:1184–1192Google Scholar
  16. Peng XH, Li MX, Zou HW, Fan P, Liu PB (2012) Morphology and properties of functionalised MWNT/polypropylene composites. Plast Rubber Compos 41:23–28CrossRefGoogle Scholar
  17. Petchwattana N, Covavisaruch S, Sripanya P (2014) Effect of nano-scaled styrene butadiene rubber based nucleating agent on the thermal, crystallization and physical properties of isotactic polypropylene. J Alloys Compd 582:190–195CrossRefGoogle Scholar
  18. Petchwattana N, Naknaen P, Sanetuntikul J (2018) Transformation of β to α phase of isotactic polypropylene nucleated with nano styrene butadiene rubber-based β-nucleating agent under microwave irradiation. J Cent South Univ 25:3098–3106CrossRefGoogle Scholar
  19. Petchwattana N, Channuan W, Naknaen P, Narupai B (2019) 3D printing filaments prepared from modified poly(lactic acid)/teak wood flour composites: an investigation on the particle size effects and silane coupling agent compatibilisation. J Phys Sci 30(2):169–188CrossRefGoogle Scholar
  20. Salmah H, Ruzaidi CM, Supri AG (2009) Compatibilisation of polypropylene/ethylene propylene diene terpolymer/kaolin composites: the effect of maleic anhydride grafted-polypropylene. J Phys Sci 20:99–107Google Scholar
  21. Saravari O, Waipunya H, Chuayjuljit S (2014) Effects of ethylene octene copolymer and ultrafine wollastonite on the properties and morphology of polypropylene-based composites. J Elastom Plast 46:175–186CrossRefGoogle Scholar
  22. Shin KY, Hong JY, Lee S, Jang J (2012) Evaluation of anti-scratch properties of graphene oxide/polypropylene nanocomposites. J Mater Chem 22:7871–7879CrossRefGoogle Scholar
  23. Sobhani H, Khorasani MM (2016) Optimization of scratch resistance and mechanical properties in wollastonite reinforced polypropylene copolymers. Polym Adv Technol 27:765–773CrossRefGoogle Scholar
  24. Spoerk M, Savandaiah C, Arbeiter F, Sapkota J, Holzer C (2019) Optimization of mechanical properties of glass-spheres-filled polypropylene composites for extrusion-based additive manufacturing. Polym Compos 40:638–651CrossRefGoogle Scholar
  25. Srinivasan T, Palanikumar K, Rajagopal K, Latha B (2017) Optimization of delamination factor in drilling GFR–polypropylene composites. Mater Manuf Process 32:226–233CrossRefGoogle Scholar
  26. Toro P, Quijada R, Peralta R, Yazdani-Pedram M (2007) Influence of grafted polypropylene on the mechanical properties of mineral-filled polypropylene composites. J Appl Polym Sci 103:2343–2350CrossRefGoogle Scholar
  27. Wu CL, Zhang MQ, Rong MZ, Friedrich K (2002) Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compos Sci Technol 62:1327–1340CrossRefGoogle Scholar
  28. Yao SS, Jin FL, Rhee KY, Hui D, Park SJ (2018) Recent advances in carbon-fiber-reinforced thermoplastic composites: a review. Compos Part B Eng 142:241–250CrossRefGoogle Scholar
  29. Zhang ZH, Yao X, Zhu HJ, Hua SD, Chen Y (2009) Preparation and mechanical properties of polypropylene fiber reinforced calcined kaolin-fly ash based geopolymer. J Cent South Univ Technol 16:49–52CrossRefGoogle Scholar

Copyright information

© Shiraz University 2019

Authors and Affiliations

  1. 1.Division of Polymer Materials Technology, Faculty of Agricultural Product Innovation and TechnologySrinakharinwirot UniversityOngkharakThailand
  2. 2.Department of Chemical Engineering, Faculty of EngineeringChulalongkorn UniversityPathumwanThailand
  3. 3.Expert Centre of Innovative MaterialsThailand Institute of Scientific and Technological ResearchKhlong LuangThailand
  4. 4.Faculty of Engineering and TechnologyKing Mongkut’s University of Technology North BangkokBankhaiThailand

Personalised recommendations