Advertisement

Bronsted Acidic Ionic Liquids (BAILs)-Catalyzed Synthesis of 1,8-Dioxo-Octahydroxanthene and 2,2′-Arylmethylene Bis(3-Hydroxy-5,5-Dimethyl-2-Cyclohexene-1-One) Derivatives Under Eco-Friendly Conditions

  • Jahanbakhsh Ashtarian
  • Reza HeydariEmail author
  • Malek-Taher Maghsoodlou
  • Afshin Yazdani-Elah-Abadi
Research Paper
  • 10 Downloads
Part of the following topical collections:
  1. Chemistry

Abstract

A simple and efficient one-pot process for the synthesis of 1,8-dioxo-octahydroxanthene and 2,2′-arylmethylene bis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) derivatives via the Knoevenagel–Michael cascade reactions of aromatic aldehydes and dimedone catalyzed by Bronsted acidic ionic liquids (BAILs) in solvent-free and aqueous conditions is described in this study. These heterocycles were prepared in the presence of Bronsted acidic ionic liquids as a suitable, economical, readily synthesized and eco-friendly catalyst. This method offers several advantages such as high yields, simplicity of the workup, low cost, short reaction times, green conditions and use of a reusable catalyst.

Keywords

Bronsted acidic ionic liquids (BAILs) Xanthene derivatives Dimedone Solvent-free conditions Multicomponent reactions 

Notes

Acknowledgments

We are thankful to the University of Sistan and Baluchestan Research Council for the partial support of this research.

References

  1. Agnes B, Peter H, Eberhardt H, Stephan DH, Wolfgang AH (2008) Acceptor substituted N-heterocyclic carbenes and their Rh(I)complexes: synthesis, structure and properties. J Organomet Chem 693:2079–2090CrossRefGoogle Scholar
  2. Ashtarian J, Heydari R, Maghsoodlou MT, Yazdani Elah Abadi A (2019) An efficient synthesis of 2,2′-arylmethylene bis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) derivatives using baker′s yeast. Rev Roum Chim 64:259–264CrossRefGoogle Scholar
  3. Bigdeli M (2010) Clean synthesis of 1,8-dioxooctahydroxanthenes promoted by DABCO-bromine in aqueous media. Chin Chem Lett 21:1180–1182CrossRefGoogle Scholar
  4. Chowdhury S, Mohan RS, Scott JL (2007) Reactivity of ionic liquids. Tetrahedron 63:2363–2389CrossRefGoogle Scholar
  5. Dabiri M, Baghbanzadeh M, Arzroomchilar E (2008) 1-Methylimidazolium trifluoroacetate ([Hmim]TFA): an efficient reusable acidic ionic liquid for the synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxo-decahydroacridines. Catal Commun 9:939–942CrossRefGoogle Scholar
  6. Das B, Thirupathi P, Mahender I, Reddy VS, Rao YK (2006) Amberlyst-15: an efficient reusable heterogeneous catalyst for the synthesis of 1,8-dioxooctahydroxanthenes and 1,8-dioxo-decahydroacridines. J Mol Catal A Chem 247:233–239CrossRefGoogle Scholar
  7. Das B, Kashanna J, Kumar RA, Jangili P (2012) Efficient organocatalytic synthesis of 1,8-dioxo-octahydroxanthenes. Synth Commun 42:2876–2884CrossRefGoogle Scholar
  8. Eichmann M, Keim W, Haumann M, Melcher BU, Wasserscheid P (2009) Nickel catalyzed dimerization of propene in chloroaluminate ionic liquids: Detailed kinetic studies in a batch reactor. J Mol Catal A Chem 314:42–48CrossRefGoogle Scholar
  9. Esmaeilpour M, Javidi J, Dehghani F, Nowroozi Dodeji F (2014) Fe3O4@SiO2–imid–PMAn magnetic porous nanospheres as recyclable catalysts for the one-pot synthesis of 14-aryl- or alkyl-14H-dibenzo[a, j]xanthenes and 1,8-dioxooctahydroxanthene derivatives under various conditions. New J Chem 38:5453–5461CrossRefGoogle Scholar
  10. Fan XS, Hu XY, Zhang XY, Wang JJ (2005a) InCl3·4H2O-promoted green preparation of xanthenedione derivatives in ionic liquids. Can J Chem 83:16–20CrossRefGoogle Scholar
  11. Fan XS, Li YZ, Zhang XY, Hu XY, Wang JJ (2005b) FeCl3·6H2O catalyzed condensation of aromatic aldehydes with 5,5-dimethyl-1,3-cyclohexanedione in ionic liquids. ChinJ Org Chem 25:1482–1486Google Scholar
  12. Fang D, Gong K, Liu Z (2009) Synthesis of 1,8-dioxo-octahydroxanthenes catalyzed by acidic ionic liquids in aqueous media. Catal Lett 127:291–295CrossRefGoogle Scholar
  13. Girijesh KV, Keshav R, Rajiv KV, Pratibha D, Singh MS (2011) An efficient one-pot solvent-free synthesis and photophysical properties of 9-aryl/alkyl-octahydroxanthene-1,8-diones. Tetrahedron 67:3698–3704CrossRefGoogle Scholar
  14. Gong K, Wang H, Wang S, Wang Y, Chen J (2015) Efficient synthesis of 1,8-dioxo-octahydroxanthenes catalyzed by β-cyclodextrin grafted with butyl sulfonic acid in aqueous media. Chin J Catal 36:1249–1255CrossRefGoogle Scholar
  15. Hajipour AR, Leila K, Arnold ER (2008) Bronsted acidic ionic liquid as an efficient catalyst for chemoselective synthesis of 1,1-diacetates under solvent-free conditions. Catal Commun 9:89–96CrossRefGoogle Scholar
  16. Hamada Y, Matsuura F, Oku M, Hatano K, Shioiri T (1997) Synthesis and application of new chiral bidentate phosphine, 2,7-di-tert-butyl-9,9-dimethyl-4,5-bis(methylphenylphosphino) xanthene. Tetrahedron Lett 38:8961–8964CrossRefGoogle Scholar
  17. Hapiot P, Lagrost C (2008) Electrochemical reactivity in room-temperature ionic liquids. Chem Rev 108:2238–2264CrossRefGoogle Scholar
  18. Hasaninejad A, Zare A, Shekouhy M, Ameri Rad J (2010) Catalyst-free one-pot four component synthesis of polysubstitutedimidazoles in neutral ionic liquid 1-butyl-3-methylimidazolium bromide. J Comb Chem 12:844–849CrossRefGoogle Scholar
  19. Ilangovan A, Muralidharan S, Sakthivel P, Malayappasamy S, Karuppusamy S, Kaushik MP (2013) Simple and cost effective acid catalysts for efficient synthesis of 9-aryl-1,8-dioxooctahydroxanthene. Tetrahedron Lett 54:491–494CrossRefGoogle Scholar
  20. Ion RM, Planner A, Wiktorowicz K, Frackowiak D (1998) The incorporation of various porphyrins into blood cells measured via flow cytometry, absorption and emission spectroscopy. Acta Biochem Pol 45:833–845Google Scholar
  21. Iranpoor N, Firouzabadi H, Azadi R (2007) An Imidazolium-based phosphinite Ionic Liquid (IL-OPPh2) as a reusable reaction medium and Pd (II) ligand in heck reactions of aryl halides with styrene and n-butyl acrylate. Eur J Org Chem 13:2197–2201CrossRefGoogle Scholar
  22. Jamison JM, Krabill K, Hatwalkar A, Jamison E, Tsai C (1990) Potentiation of theantiviral activity of poly r(A-U) by xanthene dyes. Cell Biol Int Rep 14:1075–1084CrossRefGoogle Scholar
  23. Javid A, Heravi MM, Bamoharram FF (2011a) One-pot synthesis of 1,8-dioxo-octahydroxanthenes utilizing silica-supported Preyssler nano particles as novel and efficient reusable heterogeneous acidic catalyst. Eur J Chem 8:910–916Google Scholar
  24. Javid A, Heravi MM, Bamoharram FF (2011b) One-pot synthesis of tetra substituted imidazoles catalyzed by preyssler type heteropoly acid. Eur J Chem 8:547–552Google Scholar
  25. Jin TS, Zhang JS, Xiao JC, Wang AQ, Li TS (2004) Clean synthesis of 1,8-dioxooctahydroxanthene derivatives catalyzed by p-dodecylbenzenesulfonic acid in aqueous media. Synlett 5:866–870CrossRefGoogle Scholar
  26. Jin TS, Zhang JS, Wang AQ, Li TS (2005) Solid-state condensation reactions between aldehydes and 5,5-dimethyl-1,3-cyclohexanedione by grinding at room temperature. Synth Commun 35:2339–2345CrossRefGoogle Scholar
  27. John A, Yadav PJP, Palaniappan S (2006) Clean synthesis of 1,8-dioxo-dodecahydroxanthene derivatives catalyzed by polyaniline-p-toluenesulfonate salt in aqueous media. J Mol Catal A Chem 248:121–125CrossRefGoogle Scholar
  28. Kaiser C, Pavloff AM, Garvey E, Fowler PJ, Tedeschi DH, Zirkle CL (1972) Effect of structure upon neuropharmacological activity of some chlorpromazine analogs of the diphenylmethane type. J Med Chem 15:665–673CrossRefGoogle Scholar
  29. Kalantari M (2012) Synthesis of 1,8-dioxo-octahydroxanthenes and bis(indolyl)-methanes catalyzed by [Et3NH][H2PO4] as a cheap and mild acidic ionic liquid. Arabian J Chem 5:319–323CrossRefGoogle Scholar
  30. Kantevari S, Bantu R, Nagarapu L (2006) TMSCl mediated highly efficient one-pot synthesis of octahydroquinazolinone and 1,8-dioxo-octahydroxanthene derivatives. ARKIVOC xvi:136–148Google Scholar
  31. Kantevari S, Bantu R, Nagarapu L (2007) HClO4–SiO2 and PPA–SiO2 catalyzed efficient one-pot Knoevenagel condensation, Michael addition and cyclo-dehydration of dimedone and aldehydes in acetonitrile, aqueous and solvent-free conditions: scope and limitations. J Mol Catal A Chem 269:53–57CrossRefGoogle Scholar
  32. Karade HN, Sathe M, Kaushik MP (2007) An efficient synthesis of 1,8-dioxo-octahydroxanthenes using tetrabutylammonium hydrogen sulphate. ARKIVOC xiii:252–258Google Scholar
  33. Karthikeyan G, Pandurangan A (2009) Heteropolyacid (H3PW12O40) supported MCM-41: an efficient solid acid catalyst for the green synthesis of xanthene dione derivatives. J Mol Catal A Chem 311:36–45CrossRefGoogle Scholar
  34. Khazaei A, Zolfigol MA, Moosavi-Zare AR, Zare A (2010) An efficient method for the nitration of phenols with NaNO2 in the presence of 3-methyl-1-sulfonic acid imidazolium chloride. Sci Prod Iran 17:31–36Google Scholar
  35. Khazaei A, Moosavi-Zare AR, Mohammadi Z, Zare A, Khakyzadeh V, Darvishi G (2013) Efficient preparation of 9-aryl-1,8-dioxo-octahydroxanthenes catalyzed by nano-TiO2 with high recyclability. RSC Adv 3:1323–1326CrossRefGoogle Scholar
  36. Kim YJ, Varma RS (2005) Microwave assisted preparation of imidazolium-based tetrachloroindate (III) and their application in the tetrahydropyranylation of alcohols. Tetrahedron Lett 46:1467–1469CrossRefGoogle Scholar
  37. Kore R, Srivastava R (2011a) Synthesis and applications of highly efficient, reusable, sulfonic acid group functionalized Brönsted acidic ionic liquid catalysts. J Mol Catal A Chem 345:117–126CrossRefGoogle Scholar
  38. Kore R, Srivastava R (2011b) Synthesis and applications of novel imidazole and benzimidazole based sulfonic acid group functionalized Brönsted acidic ionic liquid catalysts. J Mol Catal A Chem 345:117–126CrossRefGoogle Scholar
  39. Li JT, Li YW, Song YL, Chen GF (2012) Improved synthesis of 2,2′-arylmethylene bis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) derivatives catalyzed by urea under ultrasound. Ultrason Sonochem 19:1–4CrossRefGoogle Scholar
  40. LiX EliW (2008) A green approach for the synthesis of long chain aliphatic acid esters at room temperature. J Mol Catal A Chem 279:159–164CrossRefGoogle Scholar
  41. Ma JJ, Li JC, Tang RX, Zhou X, Wu QH, Wang C, Zhang MM, Li Q (2007a) Condensation of aromatic aldehydes with 1,3-cyclohexanedione catalyzed by NaHSO4 in ionic liquids. J Org Chem 27:640–642Google Scholar
  42. Ma JJ, Zhou X, Zhang XH, Wang C, Wang Z, Li JC, Li Q (2007b) A green and efficient synthesis of 9-aryl-3,4,5,6,7,9-hexahydroxanthene-1,8-dione using a task-specific ionic liquid as dual catalyst and solvent. Aus J Chem 60:146–148CrossRefGoogle Scholar
  43. Ma J, Wang C, Wu Q, Tang R, Liu H, Li Q (2008) An efficient green synthesis of xanthenedione derivatives promoted by acidic ionic liquid. Heteroatom Chem 19:609–611CrossRefGoogle Scholar
  44. Mahdavinia GH, Bigdeli MA, SaeidiHayeniaz Y (2009) Covalently anchored sulfonic acid on silica gel (SiO2-R-SO3H) as an efficient and reusable heterogeneous catalyst for the one-pot synthesis of 1,8-dioxooctahydroxanthenes under solvent-free conditions. Chin Chem Lett 20:539–541CrossRefGoogle Scholar
  45. Malaise G, Barloy L, Osborn JA (2001) Synthesis of xanthene-derived diimine and iminophosphine compounds as potential chiral bidentate ligands. Tetrahedron Lett 42:7417–7419CrossRefGoogle Scholar
  46. Menchen SM, Benson SC, Lam JYL, Zhen W, Sun D, Rosenblum BB, Khan SH, Taing M (2003) U.S. Patent, US6583168, Chem Abstr 139:54287fGoogle Scholar
  47. Mohammadpoor-Baltork I, Moghadam M, Mirkhani V, Tangestaninejad S, Tavakoli HR (2011) Highly efficient and green synthesis of 14-aryl(alkyl)-14H-dibenzo[a, j]xanthene and 1,8-dioxooctahydroxanthene derivatives catalyzed by reusable zirconyltriflate [ZrO(OTf)2] under solvent-free conditions. Chin Chem Lett 22:9–12CrossRefGoogle Scholar
  48. Mulakayala N, Murthy PVNS, Rambabu D, Aeluri M, Adepu R, Krishna GR, Reddy CM, Prasad KRS, Chaitanya M, Kumar CS, Rao MVB, Pal M (2012) Catalysis by molecular iodine: a rapid synthesis of 1,8-dioxo-octahydroxanthenes and their evaluation as potential anticancer agents. Bioorg Med Chem Lett 22:2186–2191CrossRefGoogle Scholar
  49. Nandre KP, Patil VS, Bhosale SV (2011) CsF mediated rapid condensation of 1,3-cyclohexadione with aromatic aldehydes: comparative study of conventional heating vs. ambient temperature. Chin Chem Lett 22:777–780CrossRefGoogle Scholar
  50. Niknam K, Damya M (2009) 1-Butyl-3-methylimidazolium hydrogen sulfate [bmim]HSO4: an efficient reusable acidic ionic liquid for the synthesis of 1,8-dioxo-octahydroxanthenes. J Chin Chem Soc 56:659–665CrossRefGoogle Scholar
  51. Öchsner E, Schneider MJ, Meyer C, Haumann M, Wasserscheid P (2011) Challenging the scope of continuous, gas-phase reactions with supported ionic liquid phase (SILP) catalysts-asymmetric hydrogenation of methyl acetoacetate. Appl Catal A399:35–41CrossRefGoogle Scholar
  52. Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A 373:1–56CrossRefGoogle Scholar
  53. Oskooie HA, Tahershamsi L, Heravi MM, Baghernejad B (2010) Cellulose sulfonic acid: an efficient heterogeneous catalyst for the synthesis of 1,8-dioxo-octahydroxanthenes. Eur J Chem 7:717–720Google Scholar
  54. Pavlinac J, Zupan M, Laali KK, Stavber S (2009a) Halogenation of organic compounds in ionic liquids. Tetrahedron 65:5625–5662CrossRefGoogle Scholar
  55. Pavlinac J, Zupan M, Stavber S (2009b) Transformations of organic molecules with F-TEDA-BF4 in ionic liquid media. Molecules 14:2394–2409CrossRefGoogle Scholar
  56. Poupelin JP, Saint-Ruf G, Foussard-Blanpin O, Narcisse G, Uchida-Ernouf G, Lacroix R (1978) Synthesis and antiinflammatory properties of bis (2-hydroxy-1-naphthyl)methane derivatives I. Eur J Med Chem 13:67–71Google Scholar
  57. Qiao YF, Okazaki T, Ando T, Mizoue K, Kondo K, Eguchi T, Kakinuma K (1998) Isolation and characterization of a new pyrano[3′,4′ 6,7]naphtho[1,2-b]xanthene antibiotic FD-594. J Antibiot 51:282–287CrossRefGoogle Scholar
  58. Rewcastle GW, Atwell GJ, Zhuang L, Baguley BC, Denny WA (1991) Potential antitumor agents. 61. Structure-activity relationships for in vivo colon 38 activity among disubstituted 9-oxo-9H-xanthene-4-acetic acids. J Med Chem 34:217–222CrossRefGoogle Scholar
  59. Rogers RD, Seddon KR (2002) Ionic liquids: industrial applications to green chemistry. American Chemical Society, WashingtonCrossRefGoogle Scholar
  60. Rostamizadeh S, Amani AM, Mahdavinia GH, Amiri G, Sepehrian H (2010) Ultrasound promoted rapid and green synthesis of 1,8-dioxo-octahydroxanthenes derivatives using nanosized MCM-41-SO3H as a nanoreactor, nanocatalyst in aqueous media. Ultrason Sonochem 17:306–309CrossRefGoogle Scholar
  61. Sarma RJ, Baruah JB (2005) One step synthesis of dibenzoxanthenes. Dyes Pigment 64:91–92CrossRefGoogle Scholar
  62. Seyyedhamzeh M, Mirzaei P, Bazgir A (2008) Solvent-free synthesis of aryl-14H-dibenzo[a, j]xanthenes and 1,8-dioxo-octahydro-xanthenes using silica sulfuric acid as catalyst. Dyes Pigment 76:836–839CrossRefGoogle Scholar
  63. Shakibaei GI, Mirzaei P, Bazgir A (2007) Dowex-50 W promoted synthesis of 14-aryl-14H-dibenzo[a, j]xanthene and 1,8-dioxooctahydroxanthene derivatives under solvent-free conditions. Appl Catal A 325:188–192CrossRefGoogle Scholar
  64. Shaterian HR, Arman M, Rigi F (2011a) Domino Knoevenagel condensation, Michael addition, and cyclization using ionic liquid, 2-hydroxyethylammonium formate, as a recoverable catalyst. J Mol Liq 158:145–150CrossRefGoogle Scholar
  65. Shaterian HR, Ranjbar M, Azizi K (2011b) Synthesis of benzoxanthene derivatives using Brønsted acidic ionic liquids (BAILs), 2-pyrrolidonium hydrogen sulfate and (4-sulfobutyl)tris(4-sulfophenyl) phosphonium hydrogen sulfate. J Mol Liq 162:95–99CrossRefGoogle Scholar
  66. Shirini F, Yahyazadeh A, Mohammadi K (2014) One-pot synthesis of various xanthene derivatives using ionic liquid 1,3-disulfonic acid imidazolium hydrogen sulfate as an efficient and reusable catalyst under solvent-free conditions. Chin Chem Lett 25:341–347CrossRefGoogle Scholar
  67. Sivaguru P, Lalitha A (2014) Ceric ammonium nitrate supported HY-zeolite: an efficient catalyst for the synthesis of 1,8-dioxo-octahydroxanthenes. Chin Chem Lett 25:321–323CrossRefGoogle Scholar
  68. Song GY, Wang B, Luo HT, Yang LM (2007) Fe3+-montmorillonite as a cost-effective and recyclable solid acidic catalyst for the synthesis of xanthenediones. Catal Commun 8:673–676CrossRefGoogle Scholar
  69. Tu SJ, Zhou JF, Lu ZS, Deng X, Shi DQ, Wang SH (2002) Condensation of aromatic aldehyde with 5,5 dimethyl 1,3 cyclohexandione without catalyst. Synth Commun 32:3063–3067CrossRefGoogle Scholar
  70. Wasserscheid P, Keim W (2000) Ionic liquids new solutions for transition metal catalysis. Angew Chem Int Ed 39:3772–3789CrossRefGoogle Scholar
  71. Wasserscheid P, Welton T (2008) Ionic liquids in synthesis. Wiley-VCH, WeinheimGoogle Scholar
  72. Zare A, Hasaninejad A, Moosavi Zare AR, Parhami A, Sharghi H, Khalafi-Nezhad A (2007) Zinc oxide as a new, highly efficient, green, and reusable catalyst for microwave-assisted Michael addition of sulfonamides to α, β-unsaturated esters in ionic liquids. Can J Chem 85:438–444CrossRefGoogle Scholar
  73. Zare A, Moosavi-Zare AR, Hasaninejad A, Parhami A, Khalafi-Nezhad A, Beyzavi MH (2009a) Green, catalyst-free protocol for the efficient synthesis of N-sulfonyl aldimines and ketimines in ionic liquid [bmim] Br. Synth Commun 39:3156–3165CrossRefGoogle Scholar
  74. Zare A, Parhami A, Moosavi-Zare AR, Hasaninejad A, Khalafi-Nezhad A, Beyzavi MH (2009b) A catalyst-free protocol for the green and efficient condensation of indoles with aldehydes in ionic liquids. Can J Chem 87:416–421CrossRefGoogle Scholar
  75. Zhang ZH, Liu YH (2008) Antimony trichloride/SiO2 promoted synthesis of 9-ary-3,4,5,6,7,9-hexahydroxanthene-1,8-diones. Catal Commun 9:1715–1719CrossRefGoogle Scholar
  76. Zhang ZH, Tao XY (2008) 2,4,6-Trichloro-1,3,5-triazine-promoted synthesis of 1,8-dioxo-octahydroxanthenes under solvent-free conditions. Aus J Chem 61:77–79CrossRefGoogle Scholar
  77. Zhou ZQ, Deng XC (2013) [Et3NH][HSO4] catalyzed efficient and green synthesis of 1, 8-dioxo-octahydroxanthenes. J Mol Catal A Chem 367:99–102CrossRefGoogle Scholar
  78. Zolfigol MA, Khazaei A, Moosavi-Zare AR, Zare A (2010a) Ionic liquid 3-methyl-1-sulfonic acid imidazolium chloride as a novel and highly efficient catalyst for the very rapid synthesis of bis(indolyl)methanes under solvent-free conditions. Org Prep Proc Int 42:95–102CrossRefGoogle Scholar
  79. Zolfigol MA, Khazaei A, Moosavi-Zare AR, Zare A (2010b) 3-Methyl-1-Sulfonic acid imidazolium chloride as a new, efficient and recyclable catalyst and solvent for the preparation of N-sulfonyl imines at room temperature. J Iran Chem Soc 7:646–651CrossRefGoogle Scholar
  80. Zolfigol MA, Khazaei A, Moosavi-Zare AR, Zare A, Khakyzadeh V (2011) Rapid synthesis of 1-amidoalkyl-2-naphthols over sulfonic acid functionalized imidazolium salts. Appl Catal A 400:70–81CrossRefGoogle Scholar
  81. Zolfigol MA, Khakyzadeh V, Moosavi-Zare AR, Zare A, Azimi SB, Asgari Z, Hasaninejad A (2012) Preparation of various xanthene derivatives over sulfonic acid functionalized imidazolium salts (SAFIS) as novel, highly efficient and reusable catalysts. C R Chim 15:719–736CrossRefGoogle Scholar

Copyright information

© Shiraz University 2019

Authors and Affiliations

  • Jahanbakhsh Ashtarian
    • 1
  • Reza Heydari
    • 1
    Email author
  • Malek-Taher Maghsoodlou
    • 1
  • Afshin Yazdani-Elah-Abadi
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceUniversity of Sistan and BaluchestanZahedanIran
  2. 2.Department of BiologyScience and Arts UniversityYazdIran

Personalised recommendations