Advertisement

A Note on Localization of Entropy of Doubly Stochastic Operators

  • Mehdi RahimiEmail author
  • Maisam Hedyeloo
  • Nahid Bidabadi
Research Paper
Part of the following topical collections:
  1. Mathematics

Abstract

In this paper, we present a local approach to the entropy of doubly stochastic operators. The definition of the local entropy follows some steps, motivated by Downarowicz and Frej (Ergod Theory Dyn Syst 25(2):455–481, 2005). It results in a local approach to the entropy of doubly stochastic operators with finite numbers of ergodic measures as well as Koopman operators.

Keywords

Doubly stochastic operator Entropy Local entropy 

Mathematics Subject Classification

28D20 

References

  1. Alicki R, Fannes M (2001) Quantum dynamical systems. Oxford University Press, OxfordCrossRefzbMATHGoogle Scholar
  2. Breiman L (1960) The individual theorem of information theory. Ann Math Stat 28(1957):809–811 (errata 31:809–810)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Brin M, Katok A (1960) On local entropy in geometric dynamics. Lecture notes in mathematics, 1007. Springer, New York, pp 30–38Google Scholar
  4. Chacon RV, Ornstein DS (1960) A general ergodic theorem. Ill J Math 4(2):153–160MathSciNetCrossRefzbMATHGoogle Scholar
  5. Downarowicz T, Frej B (2005) Measure-theoretic and topological entropy of operators on function spaces. Ergod Theory Dyn Syst 25(2):455–481MathSciNetCrossRefzbMATHGoogle Scholar
  6. Falconer K (1990) Fractal geometry. Wiley, Chichester, p 1990Google Scholar
  7. Frej B, Frej P (2012) The Shannon-McMillan theorem for doubly stochastic operators. Nonlinearity 25:3453–3467MathSciNetCrossRefzbMATHGoogle Scholar
  8. Frej B, Frej P (2017) An integral formula for entropy of doubly stochastic operators. Fundam Math 213(3):271–89.  https://doi.org/10.4064/fm213-3-6 MathSciNetCrossRefzbMATHGoogle Scholar
  9. Frej B, Huczek D (2019) Doubly stochastic operators with zero entropy. Ann Funct Anal 10(1):144–156MathSciNetCrossRefzbMATHGoogle Scholar
  10. Ghys E, Langevin R, Walczak PG (1986) Entropie mesurée et partitions de l’unité. C R Acad Sci Paris Sér I 303:251–254MathSciNetzbMATHGoogle Scholar
  11. Kamiński B, Lazaro JS (2000) A note on the entropy of a doubly stochastic operator. Colloq Math 84/85(1):245–254MathSciNetCrossRefzbMATHGoogle Scholar
  12. Langevin R, Walczak PG (1994) Entropy, transverse entropy and partitions of unity. Ergod Theory Dyn Syst 14:551–563MathSciNetCrossRefzbMATHGoogle Scholar
  13. Makarov II (2000) Dynamical entropy for Markov operators. J Dyn Control Syst 6(1):1–11MathSciNetCrossRefzbMATHGoogle Scholar
  14. McMillan B (1953) The basic theorems of information theory. Ann Math Stat 24:196–219MathSciNetCrossRefzbMATHGoogle Scholar
  15. Meson AM, Vericat F (2004) Variational analysis for the multifractal spectra of local entropies and Lyapunov exponents. Chaos Solitons Fractals 19(5):1031–1038MathSciNetCrossRefzbMATHGoogle Scholar
  16. Pesin YB (1997) Dimension theory in dynamical systems. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  17. Phelps R (1966) Lectures on Choquet’s theorem. Van Nostrand, PrincetonzbMATHGoogle Scholar
  18. Rahimi M (2015) A local approach to \(g\)-entropy. Kybernetika 51:231–245MathSciNetzbMATHGoogle Scholar
  19. Rahimi M (2017) Entropy of action of semi-groups. Iran J Sci Trans Sci 41(1):179–183MathSciNetCrossRefzbMATHGoogle Scholar
  20. Rahimi M, Nasertayoob P (2012) Dynamical information content of the molecular structures: a quantum theory of atoms in molecules (QTAIM) approach. MATCH Commun Math Comput Chem 67:109–126MathSciNetzbMATHGoogle Scholar
  21. Rahimi M, Riazi A (2012) Entropy operator for continuous dynamical systems of finite topological entropy. Bull Iran Math Soc 38(4):883–892MathSciNetzbMATHGoogle Scholar
  22. Rahimi M, Riazi A (2014) On local entropy of fuzzy partitions. Fuzzy Sets Syst 234:97–108MathSciNetCrossRefzbMATHGoogle Scholar
  23. Taken F, Verbitski E (2000) General multifractal analysis of local entropies. Fundam Math 165:203–237MathSciNetzbMATHGoogle Scholar
  24. Viana M, Oliveira K (2016) Foundations of ergodic theory. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  25. Walters P (1982) An introduction to ergodic theory. Springer, New-YorkCrossRefzbMATHGoogle Scholar
  26. Yan Z, Chen E (2007) Multifractal analysis of local entropies for recurrence time. Chaos Solitons Fractals 33:1584–1591MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Shiraz University 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceUniversity of QomQomIran
  2. 2.Department of MathematicsAmirkabir University of TechnologyTehranIran

Personalised recommendations