Advertisement

PbS Thin Films Prepared by Chemical Bath Deposition: Effects of Concentration on the Morphology, Structure and Optical Properties

  • B. AbdallahEmail author
  • R. Hussein
  • N. Al-Kafri
  • W. Zetoun
Review Paper
  • 4 Downloads

Abstract

Lead sulfide thin films were prepared at 25 °C temperature using chemical bath deposition (CBD) on both Si (100) and glass substrates. XRD analysis of the PbS film shows that the prepared films have a polycrystalline structure with (200) preferential orientation. The grains become smaller with increasing the deposition concentration. X-ray photoelectron spectroscopy (XPS) demonstrated the presence of lead sulfide as PbS. The composition of the prepared films is investigated by energy-dispersive X-ray spectroscopy technique, and it was found that the films are stoichiometric and have low oxygen contamination. Raman and XPS spectra confirm that the CBD method is a decent one to acquire stoichiometric PbS film with nanostructures. Atomic force microscopy was applied to investigate the change in the films morphology with the concentration. The effect of the concentration, on both optical transmittance in the UV–NIR region and the structure of the film, was studied. The results revealed that the optical band gap increased slightly when the concentration increased together with the grain size evolution.

Keywords

PbS thin films Chemical bath deposition XPS Optical characterization 

References

  1. Abbas MM, Shehab AA-M, Al-Samuraee AK, Hassan NA (2011) Effect of deposition time on the optical characteristics of chemically deposited nanostructure PbS thin films. Energy Procedia 6:241–250CrossRefGoogle Scholar
  2. Abdallah B, Al-Khawaja S (2015) Optical and electrical characterization of (002) preferentially oriented n-ZnO/p-Si heterostructure. Acta Phys Pol 128:283–288CrossRefGoogle Scholar
  3. Abdallah B, Kakhia M, Shaker SA (2016) Deposition of Na2WO4 films by ultrasonic spray pyrolysis: effect of thickness on the crystallographic and sensing properties. Compos Interfaces 23:663–674CrossRefGoogle Scholar
  4. Abdallah B, Jazmatia AK, Refaai R (2017) Oxygen effect on structural and optical properties of ZnO thin films deposited by RF magnetron sputtering. Mater Res Innov 20:1–6Google Scholar
  5. Abdallah B, Jazmati AK, Kakhia M (2018a) Physical, optical and sensing properties of sprayed zinc doped tin oxide films. Optik 158:1113–1122CrossRefGoogle Scholar
  6. Abdallah B, Ismail A, Kashoua H, Zetoun W (2018b) Effects of deposition time on the morphology, structure, and optical properties of PbS thin films prepared by chemical bath deposition. J Nanomater 2018:1–8CrossRefGoogle Scholar
  7. Al-Khawaja S, Abdallah B, Abou Shaker S, Kakhia M (2015) Thickness effect on stress, structural, electrical and sensing properties of (0 0 2) preferentially oriented undoped ZnO thin films. Compos Interfaces 22:221–231CrossRefGoogle Scholar
  8. Alnama K, Abdallah B, Kanaan S (2017a) Deposition of ZnS thin film by ultrasonic spray pyrolysis: effect of thickness on the crystallographic and electrical properties. Compos Interfaces 24:1–15CrossRefGoogle Scholar
  9. Alnama K, Abdallah B, Kanaan S (2017b) Deposition of ZnS thin film by ultrasonic spray pyrolysis: effect of thickness on the crystallographic and electrical properties. Compos Interfaces 24:1–16CrossRefGoogle Scholar
  10. Barote MA, Yadav AA, Masumdar EU (2011) Effect of deposition parameters on growth and characterization of chemically deposited Cd1-XPbXS thin films. Chalcogenide Lett 8:129–138Google Scholar
  11. Beddek L, Messaoudi M, Guitouni S, Attaf N, Aida MS (2015) Structural, optical and electrical properties of PbS thin films deposited by CBD at different bath pH. Int J Sci Res Eng Technol (IJSET) 3:138–142Google Scholar
  12. Bhandari KP, Choi H, Jeong S, Mahabaduge H, Ellingson RJ (2014) Determination of heterojunction band offsets between CdS bulk and PbS quantum dots using photoelectron spectroscopy. Appl Phys Lett 105:131604CrossRefGoogle Scholar
  13. Bo Z, Guanghai L, Jun Z, Yong Z, Lide Z (2003) Synthesis and characterization of PbS nanocrystals in water/C 12 E 9/cyclohexane microemulsions. Nanotechnology 14:443–446CrossRefGoogle Scholar
  14. Buckley AN, Woods R (1984) An x-ray photoelectron spectroscopic study of the oxidation of galena. Appl Surf Sci 17:401–414CrossRefGoogle Scholar
  15. Chaudhur TK (1992) A solar thermophotovoltaic converter using Pbs photovoltaic cells. Int J Energy Res 16:481–487CrossRefGoogle Scholar
  16. Chi TC (2012) Structure, morphology, and optical properties of the compact, vertically-aligned ZnO nanorod thin films by the solution-growth technique. In: Yalçın O (ed) Nanorods InTech. InTech, RijekaGoogle Scholar
  17. Das RK, Sahoo S, Tripathi GS (2004) Electronic structure of high density carrier states in PbS, PbSe and PbTe. Semicond Sci Technol 19:433CrossRefGoogle Scholar
  18. David T, Goldsmith S, Boxman RL (2005) Dependence of zinc oxide thin film properties on filtered vacuum arc deposition parameters. J Phys D Appl Phys 38:2407CrossRefGoogle Scholar
  19. Dawood YZ, Kadhim SM, Mohammed AZ (2015) Structure and optical properties of nano PbS thin film deposited by pulse laser deposition. Eng Technol J Part B 32:1723–1730Google Scholar
  20. Faraj MG (2015) Effect of thickness on the structural and electrical properties of spray pyrolysed lead sulfide thin films. Am J Condens Matter Phys 5(2):51–55Google Scholar
  21. Ghamsari MS, Araghi MK, Farahani SJ (2006) The influence of hydrazine hydrate on the photoconductivity of PbS thin film. Mater Sci Eng B 133:113–116CrossRefGoogle Scholar
  22. Gode F, Baglayan O, Guneri E (2015) P-type nanostructure PBS thin films prepared by the silar method. Chalcogenide Lett 12:519–528Google Scholar
  23. Guglielmi M, Martucci A, Fick J, Vitrant G (1998) Preparation and Characterization of HgxCd1-xS and PbxCd1-xS quantum dots and doped thin films. J Sol Gel Sci Technol 11:229–240CrossRefGoogle Scholar
  24. Günes S, Fritz KP, Neugebauer H, Sariciftci NS, Kumar S, Scholes GD (2007) Hybrid solar cells using PbS nanoparticles. Sol Energy Mater Sol Cells 91:420–423CrossRefGoogle Scholar
  25. Huaqiang C, Guozhi W, Sichun Z, Xinrong Z (2006) Growth and photoluminescence properties of PbS nanocubes. Nanotechnology 17:3280CrossRefGoogle Scholar
  26. Joshi RK, Kanjilal A, Sehgal H (2004) Solution grown PbS nanoparticle films. Appl Surf Sci 221:43–47CrossRefGoogle Scholar
  27. Kar A, Sain S, Rossouw D, Knappett BR, Pradhan SK, Wheatley AEH (2016) Facile synthesis of SnO2-PbS nanocomposites with controlled structure for applications in photocatalysis. Nanoscale 8:2727–2739CrossRefGoogle Scholar
  28. Khiew PS, Radiman S, Huang NM, Ahmad MS (2003) Studies on the growth and characterization of CdS and PbS nanoparticles using sugar-ester nonionic water-in-oil microemulsion. J Cryst Growth 254:235–243CrossRefGoogle Scholar
  29. Krauss TD, Wise FW, Tanner DB (1996) Observation of coupled vibrational modes of a semiconductor nanocrystal. Phys Rev Lett 76:1376–1379CrossRefGoogle Scholar
  30. Li HP, Liu B, Kam CH, Lam YL, Que W, Gan LM, Chew CH, Xu GQ (1999) Optical nonlinearity of surface-modified PbS and CdxPb1-xS nanoparticles in the femtosecond regime. Proc SPIE 3899:376–383Google Scholar
  31. Li C, Shi G, Xu H, Guang S, Yin R, Song Y (2007) Nonlinear optical properties of the PbS nanorods synthesized via surfactant-assisted hydrolysis. Mater Lett 61:1809–1811CrossRefGoogle Scholar
  32. Luther JM, Law M, Song Q, Perkins CL, Beard MC, Nozik AJ (2008) Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. Am Chem Soc 2:271–280Google Scholar
  33. Malyarevich AM, Gaponenko MS, Savitski VG, Yumashev KV, Rachkovskaya GE, Zakharevich GB (2007) Nonlinear optical properties of PbS quantum dots in boro-silicate glass. J Non Cryst Solids 353:1195–1200CrossRefGoogle Scholar
  34. McNaughter PD, Bear JC, Mayes AG, Parkin IP, O’Brien P (2017) The in situ synthesis of PbS nanocrystals from lead(II) n-octylxanthate within a 1,3-diisopropenylbenzene–bisphenol A dimethacrylate sulfur copolymer. R Soc Open Sci 4:170383CrossRefGoogle Scholar
  35. Mrad O, Ismail IM, Abdallah B, Rihawy M (2014) Optical and chemical properties of vanadium oxide thin films prepared by vacuum arc discharge. J Optoelectron Adv Mater 16:1099–1103Google Scholar
  36. Obaid AS, Mahdi MA, Ramizy A, Hassan Z (2012) Structural properties of nanocrystalline PbS thin films prepared by chemical bath deposition method. Adv Mater Res 364:60–64CrossRefGoogle Scholar
  37. Orozco-Terán RA, Sotelo-Lerma M, Ramirez-Bon R, Quevedo-López MA, Mendoza-González O, Zelava-Angel O (1999) Pbs-Cds bilayers prepared by the chemical bath deposition technique at different reaction temperatures. Thin Solid Films 343–344:587–590CrossRefGoogle Scholar
  38. Ovsyannikov SV, Shchennikov VV, Cantarero A, Cros A, Titov AN (2007) Raman spectra of (PbS)1.18(TiS2)2 misfit compound. Mater Sci Eng A 462:422–426CrossRefGoogle Scholar
  39. Pentia E, Pintilie L, Matei I, Botila T, Ozbay E (2001) Chemically prepared nanocrystalline PbS thin films. J Optoelectron Adv Mater 3:525–530Google Scholar
  40. Pentia E, Draghici V, Sarau G et al (2004) Structural, electrical, and photoelectrical properties of CdxPb1-xS thin films prepared by chemical bath deposition. ETATS-UNIS: Electrochemical Society, PenningtonGoogle Scholar
  41. Pérez-García CE, Ramírez-Bon R, Vorobiev YV (2015) PbS thin films growth with CBD and PCBD techniques: a comparative study. Chalcogenide Lett 12:579–588Google Scholar
  42. Pop I, Nascu C, Ionescu V, Indrea E, Bratu I (1997) Structural and optical properties of PbS thin films obtained by chemical deposition. Thin Solid Films 307:240–244CrossRefGoogle Scholar
  43. Preobrajenski AB, Chassé T (1999) Epitaxial growth and interface structure of PbS on InP(110). Appl Surf Sci 142:394–399CrossRefGoogle Scholar
  44. Ramin Y, Mohsen C, Farid J-S, Mahmoudian MR, Abdolhossein S, Nay Ming H (2014) Influences of anionic and cationic dopants on the morphology and optical properties of PbS nanostructures. Chin Phys B 23:108101CrossRefGoogle Scholar
  45. Reichea R, Thielschb R, Oswalda S, Wetziga K (1999) XPS studies and factor analysis of PbS nanocrystal-doped SiO thin films. J Electron Spectrosc Relat Phenom 104:161–171CrossRefGoogle Scholar
  46. Rivera-Nieblas JO, Alvarado-Rivera J, Acosta-Enríquez MC, Ochoa-Landin R, Espinoza-Beltrán FJ, Apolinar-Iribe A et al (2013) Resistance and resistivities of PbS thin films using polyethylenimine by chemical bath deposition. Chalcogenide Lett 10:349–358Google Scholar
  47. Scherrer P (1918) Determination of the size and internal structure of colloidal particles using x-ray. Nachr Ges Wiss Gottingen 2:98–100Google Scholar
  48. Schreck E, Dappe V, Sarret G, Sobanska S, Nowak D, Nowak J et al (2014) Foliar or root exposures to smelter particles: consequences for lead compartmentalization and speciation in plant leaves. Sci Total Environ 476–477:667–676CrossRefGoogle Scholar
  49. Seghaier S, Kamoun N, Brini R, Amara AB (2006) Structural and optical properties of PbS thin films deposited by chemical bath deposition. Mater Chem Phys 97:71–80CrossRefGoogle Scholar
  50. Takahashi M, Ohshima Y, Nagata K, Furuta S (1993) Electrodeposition of PbS films from acidic solution. J Electroanal Chem 359:281–286CrossRefGoogle Scholar
  51. Tang J, Kemp KW, Hoogland S, Jeong KS, Liu H, Levina L et al (2011) Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat Mater 10:765–771CrossRefGoogle Scholar
  52. Ubale AU, Junchara AR, Wadibhasme NH, Purkab ASD, Mankar RB, Sangawar VS (2007) Thickness dependent structural, electrical and optical properties of chemically deposited nano particle PbS thin film. Turk J Phys 31:279–286Google Scholar
  53. Valenzuela-Jáuregui JJ, Ramı́rez-Bon R, Mendoza-Galván A, Sotelo-Lerma M (2003) Optical properties of PbS thin films chemically deposited at different temperatures. Thin Solid Films 441:104–110CrossRefGoogle Scholar
  54. Yu X-R, Liu F, Wang Z-Y, Chen Y (1990) Auger parameters for sulfur-containing compounds using a mixed aluminum-silver excitation source. J Electron Spectrosc Relat Phenom 50:159–166CrossRefGoogle Scholar
  55. Zhang H, Ma X, Xu J, Yang D (2004) Synthesis of CdS nanotubes by chemical bath deposition. J Cryst Growth 263:372–376CrossRefGoogle Scholar

Copyright information

© Shiraz University 2019

Authors and Affiliations

  1. 1.Department of PhysicsAtomic Energy CommissionDamascusSyria

Personalised recommendations