Advertisement

The Semi-convergence of GSOR-like Methods for Singular Saddle Point Problems

  • Huidi WangEmail author
Research Paper
  • 83 Downloads

Abstract

In this paper, we prove the semi-convergence of the class of GSOR-like methods with two real functions applied to solve the singular saddle point problems, and discuss the optimal iteration parameters and the corresponding optimal semi-convergence factor for methods in the class.

Keywords

Semi-convergence GSOR-like methods Saddle point problems 

Notes

Acknowledgements

I would like to thank the anonymous reviewers for their valuable comments and suggestions that help us to improve the quality of this manuscript.

References

  1. Arrow K, Hurwicz L, Uzawa H (1958) Studies in linear and non-linear programming. Stanford University Press, StanfordzbMATHGoogle Scholar
  2. Bai Z-Z (2009) Optimal parameters in the HSS-like methods for saddle point problems. Numer Linear Algebra Appl 16:447–479MathSciNetCrossRefzbMATHGoogle Scholar
  3. Bai Z-Z (2010) On semi-convergence of Hermitian and skew-Hermitian splitting methods for singular linear systems. Computing 89:171–197MathSciNetCrossRefzbMATHGoogle Scholar
  4. Bai Z-Z, Golub GH, Pan J-Y (2004) Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer Math 98:1–32MathSciNetCrossRefzbMATHGoogle Scholar
  5. Bai Z-Z, Golub GH (2007) Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle point problems. IMA J Numer Anal 27:1–23MathSciNetCrossRefzbMATHGoogle Scholar
  6. Bai Z-Z, Golub GH, Li C-K (2006) Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices. SIAM J Sci Comput 28:583–603MathSciNetCrossRefzbMATHGoogle Scholar
  7. Bai Z-Z, Golub GH, Li C-K (2007) Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices. Math Comp 76:287–298MathSciNetCrossRefzbMATHGoogle Scholar
  8. Bai Z-Z, Golub GH, Ng MK (2003) Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J Matrix Anal Appl 24:603–626MathSciNetCrossRefzbMATHGoogle Scholar
  9. Bai Z-Z, Ng MK (2005) On inexact preconditioners for nonsymmetric matrices. SIAM J Sci Comput 26:1710–1724MathSciNetCrossRefzbMATHGoogle Scholar
  10. Bai Z-Z, Ng MK, Wang Z-Q (2009) Constraint preconditioners for symmetric indefinite matrices. SIAM J Matrix Anal Appl 31:410–433MathSciNetCrossRefzbMATHGoogle Scholar
  11. Bai Z-Z, Parlett BN, Wang Z-Q (2005) On generalized successive overrelaxation methods for augmented linear systems. Numer Math 102:1–38MathSciNetCrossRefzbMATHGoogle Scholar
  12. Bai Z-Z, Wang Z-Q (2008) On parameterized inexact Uzawa methods for generalized saddle point problems. Linear Algebra Appl 428:2900–2932MathSciNetCrossRefzbMATHGoogle Scholar
  13. Bai Z-Z, Wang L, Yuan J-Y (2003) Weak convergence theory of quasi-nonnegative splittings for singular matrices. Appl Numer Math 47:75–89MathSciNetCrossRefzbMATHGoogle Scholar
  14. Benzi M, Golub GH (2004) A preconditioner for generalized saddle point problems. SIAM J Matrix Anal Appl 26:20–41MathSciNetCrossRefzbMATHGoogle Scholar
  15. Benzi M, Golub GH, Liesen J (2005) Numerical solution of saddle point problems. Acta Numer 14:1–137MathSciNetCrossRefzbMATHGoogle Scholar
  16. Berman A, Plemmons RJ (1994) Nonnegative matrices in the mathematical sciences. SIAM, Philadelphia, PACrossRefzbMATHGoogle Scholar
  17. Betts JT (2001) Practical methods for optimal control using nonlinear programming. SIAM, PhiladelphiazbMATHGoogle Scholar
  18. Bramble JH, Pasciak JE, Vassilev AT (1997) Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J Numer Anal 34:1072–1092MathSciNetCrossRefzbMATHGoogle Scholar
  19. Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, New YorkCrossRefzbMATHGoogle Scholar
  20. Chao Z, Chen G-L (2015) A note on semi-convergence of generalized parameterized inexact Uzawa method for singular saddle point problems. Numer Algorithms 68:95–105MathSciNetCrossRefzbMATHGoogle Scholar
  21. Chen Y-L, Tan X-Y (2005) Semiconvergence criteria of iterations and extrapolated iterations and constructive methods of semiconvergent iteration matrices. Appl Math Comput 167:930–956MathSciNetzbMATHGoogle Scholar
  22. Darvishi MT, Hessari P (2006) Symmetric SOR method for augmented systems. Appl Math Comput 183:409–415MathSciNetzbMATHGoogle Scholar
  23. De Sturler E, Liesen J (2005) Block-diagonal and constraint preconditioners for nonsymmetric indefinite linear systems. SIAM J Sci Comput 26:1598–1619MathSciNetCrossRefzbMATHGoogle Scholar
  24. Dyn N, Ferguson WE Jr (1983) The numerical solution of equality constrained quadratic programming problems. Math Comp 41:165–170MathSciNetzbMATHGoogle Scholar
  25. Elman HC, Golub GH (1994) Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J Numer Anal 31:1645–1661MathSciNetCrossRefzbMATHGoogle Scholar
  26. Elman HC, Silvester DJ, Wathen AJ (2002) Performance and analysis of saddle point preconditioners for the discrete steady-state Navier–Stokes equations. Numer Math 90:665–688MathSciNetCrossRefzbMATHGoogle Scholar
  27. Fan Y-Z, Chen Z-X (2014) Semi-convergence of an alternating-Direction iterative method for singular saddle point problems. Int J Numer Anal Model Ser B 5:156–161MathSciNetzbMATHGoogle Scholar
  28. Fan H-T, Zhu X-Y, Zheng B (2015) On semi-convergence of a class of relaxation methods for singular saddle point problems. Appl Math Comput 261:68–80MathSciNetzbMATHGoogle Scholar
  29. Fortin M, Glowinski R (1983) Augmented Lagrangian methods: applications to the numerical solution of boundary value problems. North-Holland Publishing Co., AmsterdamzbMATHGoogle Scholar
  30. Gill PE, Murray W, Wright MH (1981) Practical optimization. Academic Press, LondonzbMATHGoogle Scholar
  31. Golub GH, Wu X, Yuan J-Y (2001) SOR-like methods for augmented systems. BIT Numer Math 41:71–85MathSciNetCrossRefzbMATHGoogle Scholar
  32. Gould NIM, Hribar ME, Nocedal J (2001) On the solution of equality constrained quadratic programming problems arising in optimization. SIAM J Sci Comput 23:1376–1395MathSciNetCrossRefzbMATHGoogle Scholar
  33. Hu Q-Y, Zou J (2001) An iterative method with variable relaxation parameters for saddle point problems. SIAM J Matrix Anal Appl 23:317–338MathSciNetCrossRefzbMATHGoogle Scholar
  34. Hu Q-Y, Zou J (2002) Two new variants of nonlinear inexact Uzawa algorithms for saddle point problems. Numer Math 93:333–359MathSciNetCrossRefzbMATHGoogle Scholar
  35. Huang Z-D, Zhou X-Y (2015) On the minimum convergence factor of a class of GSOR-like methods for augmented systems. Numer Algorithms 70:113–132MathSciNetCrossRefzbMATHGoogle Scholar
  36. Keller C, Gould NIM, Wathen AJ (2000) Constraint preconditioning for indefinite linear systems. SIAM J Matrix Anal Appl 21:1300–1317MathSciNetCrossRefzbMATHGoogle Scholar
  37. Li J-L, Huang T-Z (2012) Semi-convergence analysis of the inexact Uzawa method for singular saddle point problems. Rev Un Mat Argent 53:61–70MathSciNetzbMATHGoogle Scholar
  38. Li J-L, Huang T-Z (2012) The semi-convergence of generalized SSOR method for singular augmented systems. Int J Numer Anal Model 9:270–275MathSciNetzbMATHGoogle Scholar
  39. Li J-C, Kong X (2008) Optimal parameters of GSOR-like methods for solving the augmented linear systems. Appl Math Comput 204:150–161MathSciNetzbMATHGoogle Scholar
  40. Li Z, Li C-J, Evans DJ, Zhang T (2005) Two parameter GSOR method for the augmented systems. Int J Comput Math 82:1033–1042MathSciNetCrossRefzbMATHGoogle Scholar
  41. Li C-J, Li Z, Nie YY, Evans DJ (2004) Generalized AOR method for the augmented system. Int J Comput Math 81:495–504MathSciNetCrossRefzbMATHGoogle Scholar
  42. Li J-L, Zhang Q-N, Wu S-L (2011) Semi-convergence of the local Hermitian and skew-Hermitian splitting iteration methods for singular generalized saddle point problems. Appl Math E-Notes 11:82–90MathSciNetzbMATHGoogle Scholar
  43. Liang Z-Z, Zhang G-F (2014) On semi-convergence of a class of Uzawa methods for saddle point problems. Appl Math Comput 247:397–409MathSciNetzbMATHGoogle Scholar
  44. Lin Y-Q, Wei Y-M (2006) Fast corrected Uzawa methods for solving symmetric saddle point problems. Calcolo 43:65–82MathSciNetCrossRefzbMATHGoogle Scholar
  45. Lin Y-Q, Wei Y-M (2007) A note on constraint preconditioners for nonsymmetric saddle point problems. Numer Linear Algebra Appl 14:659–664MathSciNetCrossRefzbMATHGoogle Scholar
  46. Lu J-F, Zhang Z-Y (2009) A modified nonlinear inexact Uzawa algorithm with a variable relaxation parameter for the stabilized saddle point problem. SIAM J Matrix Anal Appl 31:1934–1957MathSciNetCrossRefzbMATHGoogle Scholar
  47. Miao S-X (2014) The semi-convergence of GSI method for singular saddle point problems. Bull Math Soc Sci Math Roum NS 57:93–100MathSciNetzbMATHGoogle Scholar
  48. Miao S-X, Gao Y (2014) Semi-convergence of the generalized local HSS method for singular saddle point problems. Rev Un Mat Argent 55:71–80MathSciNetzbMATHGoogle Scholar
  49. Miao S-X, Wang K (2011) On generalized stationary iterative method for solving the saddle point problems. J Appl Math Comput 35:459–468MathSciNetCrossRefzbMATHGoogle Scholar
  50. Rusten T, Winther R (1992) A preconditioned iterative method for saddle point problems. SIAM J Matrix Anal Appl 13:887–904MathSciNetCrossRefzbMATHGoogle Scholar
  51. Shao X-H, Li Z, Li C-J (2007) Modified SOR-like method for the augmented system. Int J Comput Math 84:1653–1662MathSciNetCrossRefzbMATHGoogle Scholar
  52. Song Y-Z (2001) Semiconvergence of block SOR method for singular linear systems with p-cyclic matrices. J Comput Appl Math 130:217–229MathSciNetCrossRefzbMATHGoogle Scholar
  53. Song Y-Z, Wang L (2003) On the semiconvergence of extrapolated iterative methods for singular linear systems. Appl Numer Math 44:401–413MathSciNetCrossRefzbMATHGoogle Scholar
  54. Wu S-L, Huang T-Z, Zhao X-L (2009) A modified SSOR iterative method for augmented systems. J Comput Appl Math 228:424–433MathSciNetCrossRefzbMATHGoogle Scholar
  55. Xiong J-S, Gao X-B (2017) Semi-convergence analysis of Uzawa-AOR method for singular saddle point problems. Comput Appl Math 36:383–395MathSciNetCrossRefzbMATHGoogle Scholar
  56. Zhang G-F, Lu Q-H (2008) On generalized symmetric SOR method for augmented systems. J Comput Appl Math 219:51–58MathSciNetCrossRefzbMATHGoogle Scholar
  57. Zhang N-M, Lu TT, Wei Y-M (2014) Semi-convergence analysis of Uzawa method for singular saddle point problems. J Comput Appl Math 255:334–345MathSciNetCrossRefzbMATHGoogle Scholar
  58. Zheng B, Bai Z-Z, Yang X (2009) On semi-convergence of parameterized Uzawa methods for singular saddle point problems. Linear Algebra Appl 431:808–817MathSciNetCrossRefzbMATHGoogle Scholar
  59. Zheng B, Wang K, Wu Y-J (2009) SSOR-like methods for saddle point problems. Int J Comput Math 86:1405–1423MathSciNetCrossRefzbMATHGoogle Scholar
  60. Zhou L-J, Zhang N-M (2014) Semi-convergence analysis of GMSSOR methods for singular saddle point problems. Comput Math Appl 68:596–605MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Shiraz University 2017

Authors and Affiliations

  1. 1.School of Mathematical SciencesZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations