Advertisement

A recyclable Ag Supported on Hydroxyapatite–Core–Shell Magnetic γ-Fe2O3 Nanoparticles (γ-Fe2O3@HAp-Ag NPs): an Environmentally Benign and Magnetically Catalyst for the Oxidation of Sulfides to Sulfoxides

  • Saeedeh Hadikhani
  • Marzieh Rekavandi
  • Seyedeh Maryam Hosseinikhah
  • Rahimeh Hajinasiri
  • Sobhan Rezayati
Research Paper
  • 32 Downloads

Abstract

Silver supported on hydroxyapatite-core–shell magnetic γ-Fe2O3 nanoparticles (γ-Fe2O3@HAp-Ag NPs) as a new, heterogeneous, and magnetically reusable nanocatalyst has been prepared under mild conditions and characterized by FT-IR, TEM, SEM, VSM, and XRD analysis. Then, γ-Fe2O3@HAp-Ag NPs was used for the oxidation of sulfides to sulfoxides with 33% aqueous H2O2 (0.5 ml) as an oxidant under solvent-free conditions at room temperature in good to excellent yields and short reaction time. Short reaction time and high yields of the desired products, non-toxicity of reagent, high catalytic activity, ecofriendly reaction conditions, operational simplicity, and ease of recovery from the reaction mixture using an external magnet are the advantages of the present method.

Keywords

γ-Fe2O3@HAp-Ag NPs Magnetic nanoparticles Oxidation Hydrogen peroxide Lewis acid 

Notes

Acknowledgements

We gratefully acknowledge funding from national elites foundation of Iran for this research. We also acknowledge Dr. Rahimeh Hajinasiri for his valuable work in correcting this manuscript.

References

  1. Abbasi Z, Rezayati S, Bagheri M, Hajinasiri R (2016) Preparation of a novel, efficient, and recyclable magnetic catalyst, γ-Fe2O3@HAp-Ag nanoparticles, and a solvent- and halogen-free protocol for the synthesis of coumarin derivatives. Chin Chem Lett 28:75–82CrossRefGoogle Scholar
  2. Abu-Reziq R, Wang D, Post M, Alper H (2007) Platinum nanoparticles supported on ionic liquid-modified magnetic nanoparticles: selective hydrogenation catalysts. Adv Synth Catal 349:2145–2150CrossRefGoogle Scholar
  3. Adam W, Korb MN, Roschmann KJ, Saha-Moller CR (1998) Titanium-catalyzed, asymmetric sulfoxidation of alkyl aryl sulfides with optically active hydroperoxides. J Org Chem 63:3423–3428CrossRefGoogle Scholar
  4. Aiping G, Mei WG, Dongping W, Lu Z, Haibin L, Wei T, Licheng S (2006) Asymmetric oxidation of sulfides catalyzed by vanadium(IV) complexes of dibromo- and diiodo-functionalized chiral schiff bases. Chin J Catal 27:743–748CrossRefGoogle Scholar
  5. Al-Hashimi M, Fisset E, Sullivan AC, Wilson JRH (2006) Selective oxidation of sulfides to sulfoxides using a silica immobilised vanadyl alkyl phosphonate catalyst. Tetrahedron Lett 47:8017–8019CrossRefGoogle Scholar
  6. Bayat A, Shakourian-Fard M, Hashemi MM (2014) Selective oxidation of sulfides to sulfoxides by a molybdate-based catalyst using 30% hydrogen peroxide. Catal Commun 52:16–21CrossRefGoogle Scholar
  7. Carreno MC (1995) Applications of sulfoxides to asymmetric synthesis of biologically active compounds. Chem Rev 95:1717–1760CrossRefGoogle Scholar
  8. Chikazumi S, Taketomi S, Ukita M, Mizukami M, Miyajima H, Setogawa M, Kurihara Y (1987) J Magn Magn Mater 65:245–251CrossRefGoogle Scholar
  9. Dai W, Li G, Wang L, Chen B, Shang S, Lv Y, Gao S (2014) Enantioselective oxidation of sulfides with H2O2 catalyzed by a pre-formed manganese complex. RSC Adv 4:46545–46554CrossRefGoogle Scholar
  10. Fernandez I, Khiar N (2003) Recent developments in the synthesis and utilization of chiral sulfoxides. Chem Rev 103:3651–3706CrossRefGoogle Scholar
  11. Ghorbani-Choghamarani A, Ghasemi B, Safari Z, Azadi G (2015) Schiff base complex coated Fe3O4 nanoparticles: a highly reusable nanocatalyst for the selective oxidation of sulfides and oxidative coupling of thiols. Catal Commun 60:70–75CrossRefGoogle Scholar
  12. Gogoi P, Kalita M, Bhattacharjee T, Barman P (2014) Copper-Schiff base complex catalyzed oxidation of sulfides with hydrogen peroxide. Tetrahedron Lett 55:1028–1030CrossRefGoogle Scholar
  13. Golchoubian H, Hosseinpoor F (2007) Effective oxidation of sulfides to sulfoxides with hydrogen peroxide under transition-metal-free conditions. Molecules 12:304–311CrossRefGoogle Scholar
  14. Graham DL, Ferreira HA, Freitas PP (2004) Magnetoresistive-based biosensors and biochips. Trends Biotechnol 22:455–462CrossRefGoogle Scholar
  15. Gupta AK, Curtis ASG (2004) Surface modied super paramagnetic nanoparticles for drug delivery: Interaction studies with human broblasts in culture. J Mater Sci Mater Med 15:493–496CrossRefGoogle Scholar
  16. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRefGoogle Scholar
  17. Haddadi H, Hafshejani SM, Farsani MR (2015) Selective and reusable oxidation of sulfides to sulfoxides with hydrogen peroxide catalyzed by organic-inorganic polyoxometalate-based frameworks. Catal Lett 145:1984–1990CrossRefGoogle Scholar
  18. Haeri HS, Rezayati SR, Rezaee Nezhad E, Darvishi H (2016) Fe2+ supported on hydroxyapatite-core–shell-γ-Fe2O3 nanoparticles: Efficient and recyclable green catalyst for the synthesis of 14-aryl-14H-dibenzo[a, j]xanthene derivatives. Res Chem Intermed 42:2567–2576CrossRefGoogle Scholar
  19. Hajipour A (1996) Stereochemistry of the addition of lithiated methyl phenyl sulfoxide to oxaziridines. Synth Commun 26:3627–3632CrossRefGoogle Scholar
  20. Hiergeist R, Andra W, Buske N, Hergt R, Hilger I, Richter U, Kaiser W (1999) Application of magnetite ferrofluids for hyperthermia. J Magn Magn Mater 201:420–422CrossRefGoogle Scholar
  21. Hiroi K, Suzuki Y, Abe I, Kawagishi R (2000) Nucleophilic addition of (difluoromethyl)trimethylsilane to selected α-imino ketones and aryl diketones. Tetrahedron 56:4701–4703CrossRefGoogle Scholar
  22. Hosseinpoor F, Golchoubian H (2006) Mn(III)-catalyzed oxidation of sulfides to sulfoxides with hydrogen peroxide. Tetrahedron Lett 47:5195–5197CrossRefGoogle Scholar
  23. Huang JY, Li SJ, Wang YG (2006) TEMPO-linked metalloporphyrins as efficient catalysts for selective oxidation of alcohols and sulfides. Tetrahedron Lett 47:5637–5640CrossRefGoogle Scholar
  24. Huang YB, Yi WB, Cai Ch (2011) A recyclable fluorous thiourea organocatalyst for the chemoselective oxidation of sufides. J Fluorine Chem 132:554–555CrossRefGoogle Scholar
  25. Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun 34(8):927–934. doi: 10.1002/chin.200324224 CrossRefGoogle Scholar
  26. Jeyakumar K, Chand DK (2006) Selective oxidation of sulfides to sulfoxides and sulfones at room temperature using H2O2 and a Mo(VI) salt as catalyst. Tetrahedron Lett 47:4573–4576CrossRefGoogle Scholar
  27. Jiang YY, Guo C, Xia HS, Mahmood I, Liu CZ, Liu HZ (2009) Magnetic nanoparticles supported ionic liquids for lipase immobilization: Enzyme activity in catalyzing esterification. J Mol Catal B Enzym 58:103–109CrossRefGoogle Scholar
  28. Karimi B, Khorasani M (2013) Selectivity Adjustment of SBA-15 based tungstate catalyst in oxidation of sulfides by incorporating a hydrophobic organic group inside the mesochannels. ACS Catal 3:1657–1664CrossRefGoogle Scholar
  29. Karimi B, Ghoreishi-Nezhad M, Clark JH (2005) selective oxidation of sulfides to sulfoxides using 30% hydrogen peroxide catalyzed with a recoverable silica-based tungstate interphase catalyst. Org Lett 7:625–628CrossRefGoogle Scholar
  30. Kassaee MZ, Masrouri H, Movahedi F (2011) Sulfamic acid-functionalized magnetic Fe3O4 nanoparticles as an efficient and reusable catalyst for one-pot synthesis of α-amino nitriles in water. Appl Catal A General 395:28–33CrossRefGoogle Scholar
  31. Kiasat AR, Nazari S (2012) Magnetic nanoparticles grafted with β-cyclodextrin polyurethane polymer as a novel nanomagnetic polymer brush catalyst for nucleophilic substitution reactions of benzyl halides in water. J Mol Catal A Chem 365:80–86CrossRefGoogle Scholar
  32. Kooti M, Afshari M (2012) Phosphotungstic acid supported on magnetic nanoparticles as an efficient reusable catalyst for epoxidation of alkenes. Mater Res Bull 47:3473–3478CrossRefGoogle Scholar
  33. Kumar A, Akanksha (2008) HbA/H2O2: an efficient biomimetic catalytic system for the oxidation of sulfides to sulfoxides. Tetrahedron Lett 48:7857–7860Google Scholar
  34. Lakouraj MM, Tajbakhsh M, Tashakkorian H (2007) Ion exchange resin catalyzed selective oxidation of sulfides to sulfoxides using hydrogen peroxide. Monatsh Chem 138:83–88CrossRefGoogle Scholar
  35. Lu A, Schmidt W, Matoussevitch N, Bonnemann H, Spliethoff B, Tesche B, Bill E, Kiefer W, Schuth F (2004) Angew Chem 116:4403–4406CrossRefGoogle Scholar
  36. Neuberger T, Schoepf B, Hofmann H, Hofmann M (2005) Super paramagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293:483–496CrossRefGoogle Scholar
  37. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:167–181CrossRefGoogle Scholar
  38. Perez JM, Simeone FJ, Saeki Y, Josephson L, Weissleder R (2003) Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J Am Chem Soc 125:10192–10193CrossRefGoogle Scholar
  39. Polshettiwar V, Varma RS (2010) Green chemistry by nano-catalysis. Green Chem 12:743–754CrossRefGoogle Scholar
  40. Rezayati R, Hajinasiri R, Erfani Z (2016a) Microwave-assisted green synthesis of 1,1-diacetates (acylals) using selectfluor™ as an environmental-friendly catalyst under solvent-free conditions. Res Chem Intermed 42:2567–2576CrossRefGoogle Scholar
  41. Rezayati S, Abbasi Z, Rezaee Nezhad E, Hajinasiri R, Farrokhnia A (2016b) Three-component synthesis of pyrano[2,3-d] pyrimidinone derivatives catalyzed by Ni2+ supported on hydroxyapatite-core–shell-γ-Fe2O3 nanoparticles in aqueous medium. Res Chem Intermed 42:7597–7609CrossRefGoogle Scholar
  42. Rezayati S, Torabi Jafroudi M, Rezaee Nezhad E, Hajinasiri R, Abbaspour S (2016c) Imidazole-functionalized magnetic Fe3O4 nanoparticles: an efficient, green, recyclable catalyst for one-pot Friedländer quinoline synthesis. Res Chem Intermed 42:5887–5898CrossRefGoogle Scholar
  43. Rezayati S, Rezaee Nezhad E, Hajinasiri R (2016d) 1-(1-Alkylsulfonic)-3-methylimidazolium chloride as a reusable Brønsted acid catalyst for the regioselective azidolysis of epoxides under solvent-free conditions. Chin Chem Lett 27:974–978CrossRefGoogle Scholar
  44. Rostami A, Navasi Y, Moradi D, Ghorbani-Choghamarani A (2013) DABCO tribromide immobilized on magnetic nanoparticle as a recyclable catalyst for the chemoselective oxidation of sulfide using H2O2 under metal- and solvent-free conditions. Catal Commun 43:16–20Google Scholar
  45. Shaabani A, Rezayan AH (2007) Silica sulfuric acid promoted selective oxidation of sulfides to sulfoxides or sulfones in the presence of aqueous H2O2. Catal Commun 8:1112–1116CrossRefGoogle Scholar
  46. Shapiro ND, Toste FD (2007) Rearrangement of alkynyl sulfoxides catalyzed by gold(I) complexes. J Am Chem Soc 129:4160–4161CrossRefGoogle Scholar
  47. Surendra K, Krishnaveni NS, Kumar VP, Sridhar R, Rao KR (2005) Selective and efficient oxidation of sulfides to sulfoxides with N-bromosuccinimide in the presence of β-cyclodextrin in water. Tetrahedron Lett 46:4581–4583CrossRefGoogle Scholar
  48. Taber A, Kirn JB, Jung JY, Ahn WS, Jin MJ (2009) Highly active and magnetically recoverable Pd-NHC catalyst immobilized on Fe3O4 nanoparticle-ionic liquid matrix for Suzuki reaction in water. Synlett 15:2477–2482Google Scholar
  49. Tsang SC, Caps V, Paraskevas I, Chadwick D, Thompsett D (2004) Magnetically separable, carbon-supported nanocatalysts for the manufacture of fine chemicals. Angew Chem 116:5763–5766CrossRefGoogle Scholar
  50. Xu C, Xu K, Gu H, Zheng R, Liu H, Zhang X, Guo Z, Xu B (2004) Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J Am Chem Soc 126:9938–9939CrossRefGoogle Scholar
  51. Yuan Y, Bian Y (2007) Gold(III) catalyzed oxidation of sulfides to sulfoxides with hydrogen peroxide. Tetrahedron Lett 48:8518–8520CrossRefGoogle Scholar
  52. Zhang Y, Xia C (2009) Magnetic hydroxyapatite-encapsulated γ-Fe2O3 nanoparticles functionalized with basic ionic liquids for aqueous Knoevenagel condensation. Appl Catal A General 366:141–147CrossRefGoogle Scholar
  53. Zhang Q, Su H, Luo J, Wei YY (2012) A magnetic nanoparticle supported dual acidic ionic liquid: a “quasi-homogeneous” catalyst for the one-pot synthesis of benzoxanthenes. Green Chem 14:201–208CrossRefGoogle Scholar
  54. Zheng X, Luo SZ, Zhang L, Cheng JP (2009) Magnetic nanoparticle supported ionic liquid catalysts for CO2 cycloaddition reactions. Green Chem 11:455–458CrossRefGoogle Scholar
  55. Zhou XT, Ji HB (2014) Highly efficient selective oxidation of sulfides to sulfoxides by montmorillonite-immobilized metalloporphyrins in the presence of molecular oxygen. Catal Commun 53:29–32CrossRefGoogle Scholar

Copyright information

© Shiraz University 2017

Authors and Affiliations

  • Saeedeh Hadikhani
    • 1
  • Marzieh Rekavandi
    • 2
  • Seyedeh Maryam Hosseinikhah
    • 3
  • Rahimeh Hajinasiri
    • 2
  • Sobhan Rezayati
    • 2
  1. 1.Department of ChemistryAhvaz Branch, Islamic Azad UniversityAhvazIran
  2. 2.Chemistry DepartmentQaemshahr Branch, Islamic Azad UniversityQaemshahrIran
  3. 3.School of ChemistryDamghan UniversityDamghanIran

Personalised recommendations