Effect of Nano-TiO2 Additions on the Densification and Properties of Magnesite–Dolomite Ceramic Composites

  • Salman Ghasemi-KahrizsangiEmail author
  • Aziz Shahraki
  • Mohammad Farooghi
Research Paper


Nano-titania, up to 8 wt%, was added to magnesite–dolomite refractory matrix. The phase and microstructure analyses of samples heated up to 1650 °C for 3 h were studied by XRD and SEM/EDS, respectively. The physical properties are reported in terms of bulk density, apparent porosity, and hydration resistance. In addition, the mechanical behavior was studied by a cold crushing strength (CCS), and flexural strength at 1200 °C test. As a result, it was found that the presence of nano-TiO2 in the magnesite–dolomite matrix induced titanates formation (Mg2TiO4 and CaTiO3), which improved the sintering process. Nano-titania influenced the bonding structure through a direct bonding enhancement. In general, the addition of 6 wt% of nano-TiO2 contributed to reach a maximum increment in physical and mechanical properties.


Magnesite–dolomite Refractory Nano-titania Hydration resistance Cold crushing strength 


  1. Adak S, Bal AS, Chattopadhyay AK, Panda PB, Rana RP (2011) Effect of nano-titania addition on the properties of magnesia–carbon system. In: Proceedings of the 54th International Colloquium on Refractories, Aachen, Germany, pp 180–183Google Scholar
  2. Antonovic V, Pundiene I, Stonys R, Cesniene J, Keriene J (2010) A review of the possible applications of nanotechnology in refractory concrete. J Civil Eng Manag 16(4):595–602CrossRefGoogle Scholar
  3. Azhari A, Golestani-Fard F, Sarpoolaky H (2009) Effect of nano iron oxide as an additive on phase and microstructural evolution of mag-chrome refractory matrix. J Eur Ceram Soc 29(13):2679–2684CrossRefGoogle Scholar
  4. Chaudhuri M, Banerjee G, Kumar A, Sarkar SL (1999) Secondary phases in natural magnesite sintered with addition of titania, ilmenite and zirconia. J Mater Sci 34:5821–5825CrossRefGoogle Scholar
  5. Chen S, Chen G, Cheng J (2000) Effect of additive on the hydration resistance of material synthesized from the magnesia-calcia system. J Am Ceram Soc Process 83:1810–1812CrossRefGoogle Scholar
  6. Chen M, Jin A, Wang N, Yu J (2006) Synthesis of hydration–resistance of CaO refractory by addition of MgO. J Min Process 14:409–416Google Scholar
  7. Chen M, Wang N, Jingkun Y, Yamaguchi A (2007a) Effect of porosity on carbonation and hydration of CaO material. J Eur Ceram Soc 27:1953–1959CrossRefGoogle Scholar
  8. Chen M, Lu C, Yu J (2007b) Improvement in performance of MgO–CaO refractories by addition of nano-sized ZrO2. J Eur Ceram Soc 27:4633–4638CrossRefGoogle Scholar
  9. Ghasemi-Kahrizsangi S, Nemati A, Shahraki A, Farooghi M (2016a) Densification and Properties of Fe2O3 Nanoparticles added CaO Refractories. Ceram Int 42:12270–12275CrossRefGoogle Scholar
  10. Ghasemi-Kahrizsangi S, Nemati A, Shahraki A, Farooghi M (2016b) Effect of nano-sized Fe2 O3 on microstructure and hydration resistance of MgO–CaO Refractories. Int J Nanosci Nanotechnol 12:19–26Google Scholar
  11. Ghasemi-Kahrizsangi S, Barati M, Gheisari H, Shahraki A, Farooghi M (2016c) Densification and properties of ZrO2 nanoparticles added magnesia—doloma refractories. Ceram Int 29:15658–15663Google Scholar
  12. Ghosh A, Tripathi HS (2012) Sintering behavior and hydration resistance of reactive dolomite. J Ceram Int 38:1315–1318CrossRefGoogle Scholar
  13. Ghosh A, Bhattacharay TK, Mukherjee B, Das SK (2004) Densification and properties of lime with V2O5 additions. J Ceram Int 30:2117–2120CrossRefGoogle Scholar
  14. Ghosh A, Bhattacharay TK, Mukherjee B, Das SK (2011) The effect of CuO addition on the sintering of lime. J Ceram Int 27:201–203CrossRefGoogle Scholar
  15. Golubović A, Radović M (2011) The growth of Mg2TiO4 single crystals using a four-mirror furnace. J Serbian Chem Soc 76(11):1561–1566CrossRefGoogle Scholar
  16. Gudilina AI, Pitak NV, Kushchenko AV (1984) Certain properties of MgO–Cr2O3–TiO2 compositions. Refract Ind Ceram 25(9):559–562CrossRefGoogle Scholar
  17. Guo R, Jiang Y, Bhalla AS (1998) Growth and properties of CaTiO3 single Crystalfibers. J Electroceram 2(3):199–203CrossRefGoogle Scholar
  18. Han B, Li Y, Guo C, Li N, Chen F (2007) Sintering of MgO-based refractories with added WO3. Ceram Int 33(8):1563–1567CrossRefGoogle Scholar
  19. Huizhong LH, Jianxiu W (2013) Influence of nano-Fe2O3 on sintering and mechanical property of magnesia-chrome refractories. Refractories 5:002Google Scholar
  20. Kashaninia F, Arpoolaky HS, Naghizadeh R, Bagheri AR, Zamanipour M (2011) Improving hydration resistance of magnesia-doloma refractories by iron oxide addition. Iran J Mater Sci Eng 8:34-40Google Scholar
  21. Khlebnikova Y, Zhukovskaya AE, Seliovanova AN (2007) Methods for determining hydration resistance of refractories. J Refract Ind Ceram 48:2–6Google Scholar
  22. Khoroshavin LB, Perepelitsyn VA (1999) On the nanotechnology of refractories. Refract Ind Ceram 40:553–557CrossRefGoogle Scholar
  23. Kuznetsov DV, Lysov DV, Nemtinov AA, Shaleiko AS, Korolkov VA (2010) Nanomaterials in refractory technology. Refract Ind Ceram 5:61–63CrossRefGoogle Scholar
  24. Lee YB, Park HC, Oh KD (1998) Sintering and microstructure development in the system MgO–TiO2. J Mater Sci 33:4321–4325CrossRefGoogle Scholar
  25. Lucion T, Duvigneaud PH, Laudet A, Stenger JF, Gueguen E (2004) Effect of TiO2 additions on the densification of MgO and MgO–CaO mixtures. Key Eng Mater 264–268:209–212CrossRefGoogle Scholar
  26. Manivasakan P, Rajendran V, Rauta PR, Sahu BB, Sahu P, Panda BK, Valiyaveettill S, Jegadesan S (2010) Effect of TiO2 nanoparticles on properties of silica refractory. J Am Ceram Soc 93(8):2236–2243CrossRefGoogle Scholar
  27. Martinac V, Labor M, Petric N (1996) Effect of TiO2, SiO2 and Al2O3on properties of sintered magnesium oxide from sea water. Mater Chem Phys 46:23–30CrossRefGoogle Scholar
  28. Otham AGM, Abuel MA, Serry MA (2001) Hydration–resistant lime refractories from egyption lime stone and ilmenite raw materials. Ceram Int 27:801–807CrossRefGoogle Scholar
  29. Othman AGM (2003) Effect of talc and bauxite on sintering, microstructure and refractory properties of Egyptian dolomitic magnesite. Br Ceram Trans 102(6):265–271CrossRefGoogle Scholar
  30. Petrović V (2006) Sintering kinetics of MgO–TiO2systems. Sci Sinter 38:287–292CrossRefGoogle Scholar
  31. Pivinskii YuE, Dyakin PV, Ya Yu, Pivinskii SV Vikhman (2003) Nanoparticles and their effective use in the technology of highly concentrated binding suspensions (hcbs) and refractory castables. Refract Ind Ceram 44:314–318CrossRefGoogle Scholar
  32. Rodríguez E, Moreno FH, Aguilar-Martínez JA, Montes-Mejía AE, Ruiz-Valdés JJ, Puente-Ornelas R, Contreras JE (2016) effect of nano-titania (n-Tio2) content on the mechano-physical properties of a magnesia refractory composite. Ceram Int 42:8445–8452CrossRefGoogle Scholar
  33. Suvorov SA, Nazmiev MI, Polovinkina RS, Maryasev IG (2006) Water-resists lime-magnesia clinker. J Refract Ind Ceram 47:38–40Google Scholar
  34. Tamura S, Ochiai T, Takanaga S, Kanai T, Nakamura H (2003) Nano-tech refractories 1: the development of the nanostructural matrix. In: Proceedings of UNITECR’03 Congress, 19–22 October, Osaka, Japan, pp 517–520Google Scholar
  35. Yin H, Ma Y, Yan J (2011) Effect of MgO coating on hydration resistance of MgO-CaO clinkers. J Mater Sci Forum 695:324–327CrossRefGoogle Scholar
  36. Zargar HR, Oprea C, Oprea G, Troczynski T (2012) The effect of nano-Cr2O3 on solid-solution assisted sintering of MgO refractories. Ceram Int 38(8):6235–6241CrossRefGoogle Scholar

Copyright information

© Shiraz University 2016

Authors and Affiliations

  • Salman Ghasemi-Kahrizsangi
    • 1
    Email author
  • Aziz Shahraki
    • 1
  • Mohammad Farooghi
    • 1
  1. 1.Department of Materials Science and EngineeringSharif University of TechnologyTehranIran

Personalised recommendations