Advertisement

Co3O4@SiO2 Nanocomposite as a Powerful and Reusable Catalyst for the Synthesis of 13-Aryl-indeno[1,2-b]naphtha[1,2-e]pyran-12(13H)-ones

  • Mohammad Ali Ghasemzadeh
  • Mina Azimi-Nasrabad
  • Seyed Mostafa Hasan-Nasrollahi
  • Mohammad Hossein Abdollahi-Basir
Research Paper
  • 31 Downloads

Abstract

An efficient and eco-friendly method for the one-pot synthesis of 13-aryl-indeno[1,2-b]naphtha[1,2-e]pyran-12(13H)-one derivatives has been developed in the presence of Co3O4@SiO2 core–shell nanocomposite. The multi-component reactions of 2H-indene-1,3-dione, β-naphthol and aldehydes were efficiently catalyzed using novel nano-scale materials under solvent-free conditions at 80 °C. Simple procedure, high yields, short reaction times, and reusability of the catalyst are advantages of this protocol. The catalyst was fully characterized by FT-IR, SEM, XRD, EDX, VSM and TEM analysis.

Keywords

Co3O4@SiO2 Nanocomposites Multi-component reaction Solvent-free 13-Aryl-indeno[12-b]naphtha[12-e]pyran-12(13H)-ones 

Notes

Acknowledgments

The authors thank the Islamic Azad University, Qom Branch, Qom, I. R. Iran for supporting this work [Grant No. 2014-13929].

References

  1. Ahmed N, Van Lier JE (2006) Silica gel supported TaBr 5: new catalyst for the facile and rapid cyclization of 2′-aminochalcones to the corresponding 2-aryl-2,3-dihydroquinolin-4(1H)-ones under solvent-free conditions. Tetrahedron Lett 47:2725–2729CrossRefGoogle Scholar
  2. Baker RA, Tatum JH, Nemec S (1990) Antimicrobial activity of naphthoquinones from fusaria. Mycopathologia 111:9–15CrossRefGoogle Scholar
  3. Behforouz M, Haddad J, Cai W, Gu Z (1998) Chemistry of Quinoline-5,8-diones. J Org Chem 63:343–346CrossRefGoogle Scholar
  4. Bing Z, Scott H, Raja R, Somorjai GA (2007) Nanotechnology in catalysis. Springer, OttawaGoogle Scholar
  5. Bucar F, Resch M, Bauer R, Burits M, Knauder E, Schubert-Zsilavecz M (1998) 5-Methylflavasperone and rhamnetin from Guiera senegalensis and their antioxidative and 5-lipoxygenase inhibitory activity. Pharmazie 53:875–878Google Scholar
  6. Dang Q, Brown BS, Erion MD (2000) Efficient synthesis of purine analogues: an FeCl3–SiO2-promoted cyclization reaction of 4,5-diaminopyrimidines with aldehydes leading to 6,8,9-trisubstituted purines. Tetrahedron Lett 41:6559–6562CrossRefGoogle Scholar
  7. Feng J, Zeng HC (2003) Size-Controlled Growth of Co3O4 Nanocubes. Chem Mater 15:2829–2835CrossRefGoogle Scholar
  8. Ghasemzadeh MA, Mirhosseini-Eshkevari B (2015) Fe3O4@silica sulfonic acid nanocomposite as a magnetically separable catalyst for the synthesis of 2-arylpyrrolo[2,3,4-kl]acridin-1(2H)-ones. J Chem Res 39:380–386CrossRefGoogle Scholar
  9. Ghasemzadeh MA, Safaei-Ghomi J, Molaei H (2012) Fe3O4 nanoparticles: as an efficient, green and magnetically reusable catalyst for the one-pot synthesis of 1,8-dioxo-decahydroacridine derivatives under solvent-free conditions. C R Chimie 15:969–974CrossRefGoogle Scholar
  10. Ghasemzadeh MA, Safaei-Ghomi J, Zahedi S (2013) An efficient and green one-pot synthesis of indazolo[1,2-b]-phthalazinetriones via three-component reaction of aldehydes, dimedone and phthalhydrazide using Fe3O4@SiO2 core-shell nanoparticles. J Serb Chem Soc 78:769–779CrossRefGoogle Scholar
  11. Ghasemzadeh MA, Abdollahi-Basir M, Babaei M (2015a) Fe3O4@SiO2-NH2 core-shell nanocomposite as an efficient and green catalyst for the multi-component synthesis of highly substituted chromeno[2,3-b]pyridines in aqueous ethanol media. Green Chem Lett Rev 8:40–49CrossRefGoogle Scholar
  12. Ghasemzadeh MA, Mirhosseini-Eshkevari B, Safaei-Ghomi J (2015b) An efficient and green one-pot synthesis of indazolo[1,2-b]-phthalazinetriones via three-component reaction of aldehydes, dimedone and phthalhydrazide using Fe3O4@SiO2 core-shell nanoparticles. Res Chem Inter 41:7703–7714CrossRefGoogle Scholar
  13. Guo HJ, Sun QM, Li XH, Wang ZX, Peng WJ (2009) Synthesis and electrochemical performance of Co3O4/C composite anode for lithium ion batteries. T Nonferr Metal Soc 19:372–376CrossRefGoogle Scholar
  14. Hammam AS, Youssef MSK, Radwansh M, Abdel-Rahman MA (2004) Synthesis of a new diels-alder quinone adduct and its use in preparing thiazolo- and oxazoloquinolines. Bull Korean Chem Soc 25:779–785CrossRefGoogle Scholar
  15. Hussein AA, Barberena I, Capson TL, Kursar TA, Coley PD, Solis PN, Gupta MP (2004) New cytotoxic naphthopyrane derivatives from Adenaria floribunda. J Nat Prod 67:451–453CrossRefGoogle Scholar
  16. Kodama O, Ichikawa H, Akatsuka T, Santisopasri V, Kato A, Hayashi Y (1993) Isolation and identification of an antifungal naphthopyran derivative from Rhinacanthus nasutus. J Nat Prod 56:292–294CrossRefGoogle Scholar
  17. Li WY, Xu LN, Chen J (2005) Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv Funct Mater 15:851–857CrossRefGoogle Scholar
  18. Lin CC, Guo Y, Vela J (2015) Microstructure effects on the water oxidation activity of Co3O4/porous silica nanocomposites. ACS Catal 5:1037–1044CrossRefGoogle Scholar
  19. Min Y, Akbulut M, Kristiansen K, Golan Y, Israelachvili J (2008) The role of interparticle and external forces in nanoparticle assembly. Nat Mater 7:527–538CrossRefGoogle Scholar
  20. Nefzi A, Ostresh JM, Houghten RA (1997) The current status of heterocyclic combinatorial libraries. Chem Rev 97:449–472CrossRefGoogle Scholar
  21. Nicolaou KC, Skokotas G, Furaya S, Suemune H, Nicolaou DC, Golfomycin A (1990) A novel designed molecule with DNA-cleaving properties and antitumor activity. Angew Chem Int Ed 29:1064–1067CrossRefGoogle Scholar
  22. Qiao H, Xiao L, Zheng Z, Liu H, Jia F, Zhang L (2008) One-pot synthesis of CoO/C hybrid microspheres as anode materials for lithium-ion batteries. J Power Sour 185:486–491CrossRefGoogle Scholar
  23. Sartori MF (1963) Heterocyclic quinones from 2,3-Dichloro-1,4-naphthoquinone. Chem Rev 63:279–296CrossRefGoogle Scholar
  24. Shakibaei GI, Feiz A, Bazgir A (2011) A simple and catalyst-free three-component method for the synthesis of spiro[indenopyrazolopyridine indoline]diones and spiro[indenopyridopyrimidine indoline]triones. C R Chim 14:556–562CrossRefGoogle Scholar
  25. Shaterian H, Mohammadnia RM, Moradi F (2012) Acidic ionic liquids catalyzed three-component synthesis of 12-aryl-12H-indeno[1,2-b]naphtho[3,2-e]pyran-5,11,13-trione and 13-aryl-indeno[1,2-b]naphtha[1,2-e]pyran-12(13H)-one derivatives. J Mol Liq 172:88–92CrossRefGoogle Scholar
  26. Thompson LA (2000) Recent applications of polymer-supported reagents and scavengers in combinatorial, parallel, or multistep synthesis. Curr Opin Chem Biol 4:324–327CrossRefGoogle Scholar
  27. Wu L, Yang L, Wang X, Yan F (2010) Silica chloride catalysed one-pot synthesis of 13-aryl-indeno[1,2-b]naphtha[1,2-e]pyran-12(13H)-ones under solvent-free conditions. J Chin Chem Soc-Taip 57:738–741CrossRefGoogle Scholar
  28. Xie X, Shen W (2009) Morphology control of cobalt oxide nanocrystals for promoting their catalytic performance. Nanoscale 1:50–60CrossRefGoogle Scholar
  29. Zavyalova U, Scholz P, Ondruschka B (2007) Influence of cobalt precursor and fuels on the performance of combustion synthesized Co3O4/γ-Al2O3 catalysts for total oxidation of methane. Appl Catal A Gen 323:226–233CrossRefGoogle Scholar
  30. Zhang L, Xue D (2002) Preparation and magnetic properties of pure CoO nanoparticles. J Mater Sci Lett 21:1931–1933CrossRefGoogle Scholar

Copyright information

© Shiraz University 2016

Authors and Affiliations

  • Mohammad Ali Ghasemzadeh
    • 1
  • Mina Azimi-Nasrabad
    • 1
  • Seyed Mostafa Hasan-Nasrollahi
    • 1
  • Mohammad Hossein Abdollahi-Basir
    • 1
  1. 1.Department of ChemistryQom Branch, Islamic Azad UniversityQomIslamic Republic of Iran

Personalised recommendations