Facile Preparation of Zirconia Nanostructures by New Method: Nano-Scale Zirconium(IV) Coordination Supramolecular Compound as Precursor

Research Paper


In this investigation, zirconia (ZrO2) nanopowders have been synthesized through the decomposition of a nano-structured zirconium(IV) coordination supramolecular compound, (pydaH)2[Zr(pydc)3]·5H2O (1), where [pyda.H]+ = 2,6-diaminopyridinium, and [pydc]2− = 2,6-pyridinedicarboxylate, as a new precursor. The compound 1 has been synthesized by sonochemical method and characterized by field emission scanning electron microscope (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and elemental analyses. The sizes of the nanostructures were approximately 50 nm. The thermal stability of compound 1 has been studied by thermal gravimetric (TG) and differential thermal analyses (DTA). The XRD pattern of the residue obtained from thermal decomposition of compound 1 under argon and air atmospheres provided two different kinds of crystal systems of zirconia, tetragonal (t) and mixture of monoclinic (m) and tetragonal (t) with particles size about 35 and 28 nm, respectively. This study, demonstrates that the supramolecular compounds may be suitable precursors for the simple one-pot preparation of nano-scale metal oxide materials with different and interesting morphologies.


Zirconia nanostructures Zr(IV) complex Crystal system Sonochemical method Thermal analyses 



Authors are grateful to Iranian national science foundation (INSF) and Iranian Research Organization for Science and Technology (IROST) and Nanotechnology Initiative Council for their unending effort to provide financial support to undertake this work.


  1. Aghabozorg H, Moghimi A, Manteghi F, Ranjbar M (2005) A nine-coordinated ZrIV complex and a self-assembling system obtained from a proton transfer compound containing 2,6-pyridinedicarboxylate and 2,6-pyridinediammonium; synthesis and X-ray crystal structure. Z Anorg Allg Chem 631:909–913CrossRefGoogle Scholar
  2. Akhbari K, Morsali A (2010) Thallium(I) supramolecular compounds: structural and properties consideration. Coord Chem Rev 254:1977–2006CrossRefGoogle Scholar
  3. Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1059CrossRefGoogle Scholar
  4. Dobrosz-Gomez I, Gomez-Garcia MA, Bojarska J, Kozanecki M, Rynkowski JM (2015) Combustion synthesis and properties of nanocrystalline zirconium oxide. C R Chimie 18:1094–1105CrossRefGoogle Scholar
  5. Edelstein AS, Cammarata RC (1996) Nanomaterials: synthesis, properties and applications. IOP Publishing Ltd, BristolCrossRefGoogle Scholar
  6. Escribano VS, Fernandez Lopez E, Panizza M, Resini C, Gallardo Amores JM, Busca G (2003) Characterization of cubic ceria-zirconia powders by X-ray diffraction and vibrational and electronic spectroscopy. Solid State Sci 5:1369–1376CrossRefGoogle Scholar
  7. Guo GY, Chen YL (2005) A nearly pure monoclinic nanocrystalline zirconia. J Solid State Chem 178:1675–1682CrossRefGoogle Scholar
  8. Han Q, Qiang F, Wang M, Zhu J, Lu L, Wang X (2010) Morphology-controlled synthesis of ZnS nanostructures via single-source approaches. Mater Res Bull 45:813–817CrossRefGoogle Scholar
  9. Heshmatpour F, Aghakhanpour RB (2011) Synthesis and characterization of nanocrystalline zirconia powder by simple sol–gel method with glucose and fructose as organic additives. Powder Technol 205:193–200CrossRefGoogle Scholar
  10. Hu ML, Morsali A, Aboutorabi L (2011) Lead(II) carboxylate supramolecular compounds: coordination modes, structures and nano-structures aspects. Coord Chem Rev 255:2821–2859CrossRefGoogle Scholar
  11. Hu ML, Safarifard V, Morsali A, Shao TL, Li XC (2013) Facile fabrication of ruthenium(IV) oxide nanostructures by thermal decomposition of two new organoruthenium(II) complexes. Inorg Chem Commun 37:189–192CrossRefGoogle Scholar
  12. Jenkins R, Snyder RL (1996) Chemical analysis: introduction to X-ray powder diffractometry. Wiley, New YorkCrossRefGoogle Scholar
  13. Khomami NTS, Heshmatpour F, Neumuller B (2014) A novel dinuclear zirconium (IV) complex derived from [Zr(acac)4] and a pentadentate Schiff base ligand: synthesis, characterization and catalytic performance in synthesis of indole derivatives. Inorg Chem Commun 41:14–18CrossRefGoogle Scholar
  14. Klug H, Alexander L (1962) X-ray diffraction procedures. Wiley, New YorkMATHGoogle Scholar
  15. Kuznetsova TG, Sadykov VA (2008) Specific features of the defect structure of metastable nanodisperse ceria, zirconia, and related materials. Kin Catal 49:886–905CrossRefGoogle Scholar
  16. Lee HY, Riehemann W, Leslie Mordike B (1992) Sintering of nanocrystalline ZrO2 and zirconia toughened alumina (ZTA). J Eur Ceram Soc 10:245–253CrossRefGoogle Scholar
  17. Liang J, Jiang X, Liu G, Deng Z, Zhuang J, Li F, Li Y (2003) Characterization and synthesis of pure ZrO2 nanopowders via sonochemical method. Mater Res Bull 38:161–168CrossRefGoogle Scholar
  18. Liu H, Feng L, Zhang X, Xue Q (1995) ESR characterization of ZrO2 nanopowder. J Phys Chem 99:332–334CrossRefGoogle Scholar
  19. Madhusudhana R, Sangamesha MA, Gopal Krishne R, Krishnamurthy L, Shekar GL (2014) Synthesis and characterization of zirconia (ZrO2) by simple sol–gel route. Int J Adv Res 2:433–436Google Scholar
  20. Mercury 1.4.1 (2001) Copyright Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK, 2001–2005Google Scholar
  21. Meskin PE, Ivanov VK, Barantchikov AE, Churagulov BR, Tretyakov YD (2006) Ultrasonically assisted hydrothermal synthesis of nanocrystalline ZrO2, TiO2, NiFe2O4 and Ni0.5Zn0.5Fe2O4 powders. Ultrason Sonochem 13:47–53CrossRefGoogle Scholar
  22. Moghimi A, Ranjbar M, Aghabozorg H, Jalali F, Shamsipur M, Yap GPA, Rahbarnoohi H (2002) A novel pyridine containing self-assembling system: synthesis, characterization, X-ray crystal structure, 13C solid phase NMR and solution studies. J Mol Struct 605:133–149CrossRefGoogle Scholar
  23. Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds. Wiley, New YorkGoogle Scholar
  24. Nitsche R, Rodewald M, Skandan G, Fuess H, Hahn H (1996) Hrtem study of nanocrystalline zirconia powders. Nanostruct Mater 7:535–546CrossRefGoogle Scholar
  25. Qiu LG, Li ZQ, Wu Y, Wang W, Xu T, Jiang X (2008) Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chem Commun 31:3642–3644CrossRefGoogle Scholar
  26. Ranjbar M, Yousefi M (2014) Synthesis and characterization of lanthanum oxide nanoparticles from thermolysis of nano-sized lanthanum(III) supramolecule as a novel precursor. J Inorg Organomet Polym 2:652–655CrossRefGoogle Scholar
  27. Ranjbar M, Çelik Ö, Mahmoudi Najaf SH, Sheshmani S, Mobarakeh NA (2012a) Synthesis of lead(II) minoxidil coordination polymer: a new precursor for lead(II) oxide and lead(II) hydroxyl bromide. J Inorg Organomet Polym 22:837–844CrossRefGoogle Scholar
  28. Ranjbar M, Yousefi M, Lahooti M, Malekzadeh A (2012b) Preparation and characterization of tetragonal zirconium oxide nanocrystals from isophthalic acid-zirconium(IV) nanocomposite as a new precursor. Int J Nanosci Nanotechnol 8:191–196Google Scholar
  29. Ranjbar M, Lahooti M, Yousefi M, Malekzadeh A (2014) Sonochemical synthesis and characterization of nano-sized zirconium(IV) complex: new precursor for the preparation of pure monoclinic and tetragonal zirconia nanoparticles. J Iran Chem Soc 11:1257–1264CrossRefGoogle Scholar
  30. Ranjbar M, Nabitabar M, Çelik Ö, Yousefi M (2015) Sonochemical synthesis and characterization of nanostructured copper(I) supramolecular compound as a precursor for the fabrication of pure-phase copper oxide nanoparticles. J Iran Chem Soc 12:551–559CrossRefGoogle Scholar
  31. Ranjbar M, Mozaffari SA, Kouhestanian E, Salar Amoli H (2016) Sonochemical synthesis and characterization of a Zn(II) supramolecule, bis(2,6 diaminopyridinium)bis(pyridine-2,6-dicarboxylato)zincate(II), as a novel precursor for the ZnO-based dye sensitizer solar cell. J Photochem Photobiol A: Chem 321:110–121CrossRefGoogle Scholar
  32. Robin AY, Fromm KM (2006) Coordination polymer networks with O- and N-donors: what they are, why and how they are made. Coord Chem Rev 250:2127–2157CrossRefGoogle Scholar
  33. Safarifard V, Morsali A (2012) Mechanochemical solid-state transformations from a 3D lead(II) chloride triazole carboxylate coordination polymer to its bromide/thiocyanate analogs via anion-replacements: precursors for the preparation of lead(II) chloride/bromide/sulfide nanoparticles. Cryst Eng Comm 14:5130–5132CrossRefGoogle Scholar
  34. Safarifard V, Morsali A (2013) Sonochemical syntheses of nano lead(II) iodide triazole carboxylate coordination polymer: precursor for facile fabrication of lead(II) oxide/iodide nano-structures. Inorg Chim Acta 398:151–157CrossRefGoogle Scholar
  35. Salavati-Niasari M, Dadkhah M, Davar F (2009a) Synthesis and characterization of pure cubic zirconium oxide nanocrystals by decomposition of bis-aqua, tris-acetylacetonato zirconium(IV) nitrate as new precursor complex. Inorg Chim Acta 362:3969–3974CrossRefGoogle Scholar
  36. Salavati-Niasari M, Dadkhah M, Davar F (2009b) Pure cubic ZrO2 nanoparticles by thermolysis of a new precursor. Polyhedron 28:3005–3009CrossRefGoogle Scholar
  37. Salavati-Niasari M, Dadkhah M, Nourani MR, Amini Fazl A (2012) Synthesis and characterization of single-phase cubic ZrO2 spherical nanocrystals by decomposition route. J Clust Sci 23:1011–1017CrossRefGoogle Scholar
  38. Santos V, Zeni M, Bergmann CP, Hohemberger JM (2008) Correlation between thermal treatment and tetragonal/monoclinic nanostructured zirconia powder obtained by sol–gel process. Rev Adv Mater Sci 17:62–70Google Scholar
  39. Son WJ, Kim J, Kim J, Ahn WS (2008) Sonochemical synthesis of MOF-5. Chem Commun (Camb) (47):6336–6338. doi: 10.1039/b814740j
  40. Srdic VV, Winterer M (2006) Comparison of nanosized zirconia synthesized by gas and liquid phase methods. J Eur Ceram Soc 26:3145–3151CrossRefGoogle Scholar
  41. Sreethawong T, Ngamsinlapasathian S, Yoshikawa S (2013) Synthesis of crystalline mesoporous-assembled ZrO2 nanoparticles via a facile surfactant-aided sol–gel process and their photocatalytic dye degradation activity. Chem Eng J 228:256–262CrossRefGoogle Scholar
  42. Tahmasian A, Safarifard V, Morsali A, Joo SW (2014) Sonochemical syntheses of a new fibrous-like nano-scale strontium(II) 3D coordination polymer; precursor for the fabrication of a strontium carbonate nanostructure. Polyhedron 67:81–88CrossRefGoogle Scholar
  43. Vollath D, Sickafus KE (1992) Synthesis of nanosized ceramic oxide powders by microwave plasma reactions. Nanostruct Mater 1:427–437CrossRefGoogle Scholar
  44. Wu NL, Wu TF (2000) Enhanced phase stability for tetragonal zirconia in precipitation synthesis. J Am Ceram Soc 83:3225–3227CrossRefGoogle Scholar

Copyright information

© Shiraz University 2016

Authors and Affiliations

  1. 1.Department of Chemical TechnologiesIranian Research Organization for Science and Technology (IROST)TehranIran

Personalised recommendations