Advertisement

Approximation by Bivariate (pq)-Bernstein–Kantorovich Operators

  • Tuncer Acar
  • Ali Aral
  • S. A. Mohiuddine
Research Paper

Abstract

In the present paper, we introduce Kantorovich modifications of (pq)-Bernstein operators for bivariate functions using a new (pq)-integral. We first estimate the moments and central moments. We give the uniform convergence of new operators, rate of convergence in terms of modulus of continuity. The approximations behaviours of the operators for functions having continuous partial derivatives and for functions belong to Lipschitz class are investigated as well.

Keywords

\((p , q)\)-integers Bivariate \((p , q)\)-integral Bivariate \((p , q)\)-Bernstein–Kantorovich operators Rate of convergence Uniform convergence 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support from King Abdulaziz University, Jeddah, Saudi Arabia.

References

  1. Acar T (2015) Asymptotic Formulas for Generalized Szász-Mirakyan Operators. Appl Math Comput 263:233–239. doi: 10.1016/j.amc.2015.04.060 MathSciNetGoogle Scholar
  2. Acar T (2016) \((p, q)\)-generalization of Szász-Mirakyan operators. Math Method Appl Sci 39(10):2685–2695CrossRefzbMATHGoogle Scholar
  3. Acar T, Aral A (2015) On pointwise convergence of q-Bernstein operators and their q-derivatives. Numer Funct Anal Optim 36(3):287–304MathSciNetCrossRefzbMATHGoogle Scholar
  4. Acar T, Aral A, Mohiudine SA (2016) On Kantorovich modification of \((p, q)\)-Baskakov operators. J Inequal Appl 2016:98. doi: 10.1186/s13660-016-1045-9 MathSciNetCrossRefzbMATHGoogle Scholar
  5. Acu AM, Muraru CV (2015) Approximation properties of bivariate extension of \(q\)-Bernstein–Schurer–Kantorovich operators. Result Math 67(3):265–279MathSciNetCrossRefzbMATHGoogle Scholar
  6. Agrawal PN, Finta Z, Kumar AS (2015) Bivariate \(q\)-Bernstein–Schurer–Kantorovich operators. Result Math 67(3):365–380MathSciNetCrossRefzbMATHGoogle Scholar
  7. Barbosu D (2000) Some generalized bivariate bernstein operators. Math Notes Miskolc 1(1):3–10MathSciNetzbMATHGoogle Scholar
  8. Braha NL, Srivastava HM, Mohiuddine SA (2014) A Korovkin’s type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallée Poussin mean. Appl Math Comput 228:162–169MathSciNetzbMATHGoogle Scholar
  9. Burban I (1995) Two-parameter deformation of the oscillator algebra and \(( p, q)\) analog of two dimensional conformal field theory. Nonlinear Math Phys 2(3–4):384–391MathSciNetCrossRefzbMATHGoogle Scholar
  10. Burban IM, Klimyk AU (1994) \(P,Q\) differentiation, \(P,Q\) integration and \(P,Q\) hypergeometric functions related to quantum groups. Integr Trans Spec Fucnt 2:15–36MathSciNetCrossRefzbMATHGoogle Scholar
  11. Devore RA, Lorentz GG (1993) Constructive approximation. Springer, BerlinCrossRefzbMATHGoogle Scholar
  12. Gairola AR, Deepmala, Mishra LN (2016) Rate of approximation by finite iterates of q-Durrmeyer operators. Proc Natl Acad Sci India Sect A Phys Sci 86(2):229234MathSciNetCrossRefzbMATHGoogle Scholar
  13. Gupta V, Aral A (2016) Bernstein Durrmeyer operators based on two parametres. Facta Univ Nis Math Inform 31(1):79–95zbMATHGoogle Scholar
  14. Hounkonnou MN, Désiré J, Kyemba B (2013) \({\cal R}(p, q)\)-calculus: differentiation and integration. SUT J Math 49:145–167Google Scholar
  15. Jagannathan R, Rao KS (2005) Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series. In: Proceedings of the international conference on number theory and mathematical physics, 20–21 December 2005Google Scholar
  16. Mishra VN, Khatri K, Mishra LN, Deepmala (2013) Inverse result in simultaneous approximation by Baskakov–Durrmeyer–Stancu operators. J Inequal Appl 2013:586MathSciNetCrossRefzbMATHGoogle Scholar
  17. Mishra VN, Khatri K, Mishra LN (2013) Statistical approximation by Kantorovich type discrete \(q\)-beta operators. Adv Differ Equ 2013:345MathSciNetCrossRefGoogle Scholar
  18. Mishra VN, Pandey S (2016) On Chlodowsky variant of \((p, q)\) Kantorovich–Stancu–Schurer operators. Int J Anal Appl 11(1):28–39MathSciNetzbMATHGoogle Scholar
  19. Mohiuddine SA (2011) An application of almost convergence in approximation theorems. Appl Math Lett 24:1856–1860MathSciNetCrossRefzbMATHGoogle Scholar
  20. Mursaleen M, Ansari KJ, Khan A (2015) On \((p, q)\)-analogue of Bernstein operators. Appl Math Comput 266:874–882MathSciNetGoogle Scholar
  21. Mursaleen M, Ansari KJ, Khan A (2015) Some approximation results by \((p,q)\)-analogue of Bernstein–Stancu operators. Appl Math Comput 264:392–402. [Corrigendum: Appl. Math. Comput, 269, 744–746 (2015)]Google Scholar
  22. Mursaleen M, Nasiuzzaman MD, Nurgali A (2015) Some approximation results on Bernstein–Schurer operators defined by \((p,q)\)-integers. J Inequal Appl 2015, Article 249Google Scholar
  23. Sahai V, Yadav S (2007) Representations of two parameter quantum algebras and \(p, q\)-special functions. J Math Anal Appl 335:268–279MathSciNetCrossRefzbMATHGoogle Scholar
  24. Volkov VI (1957) On the convergence of sequences of linear positive operators in the space of continuous functions of two variables (Russian). Dokl Akad Nauk SSSR (NS) 115:17–19zbMATHGoogle Scholar

Copyright information

© Shiraz University 2016

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Science and ArtsKirikkale UniversityKirikkaleTurkey
  2. 2.Operator Theory and Applications Research Group, Department of Mathematics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations