Hyperbolicity of the partition Jensen polynomials

  • Hannah Larson
  • Ian WagnerEmail author


Given an arithmetic function \(a: \mathbb {N}\rightarrow \mathbb {R}\), one can associate a naturally defined, doubly infinite family of Jensen polynomials. Recent work of Griffin et al. shows that for certain families of functions \(a: \mathbb {N}\rightarrow \mathbb {R}\), the associated Jensen polynomials are eventually hyperbolic (i.e., eventually all of their roots are real). This work proves Chen et al. conjecture that the partition Jensen polynomials are eventually hyperbolic as a special case. Here, we make this result explicit. Let N(d) be the minimal number such that for all \(n \ge N(d)\), the partition Jensen polynomial of degree d and shift n is hyperbolic. We prove that \(N(3)=94\), \(N(4)=206\), and \(N(5)=381\), and in general, that \(N(d) \le (3d)^{24d} (50d)^{3d^{2}}\).



The authors thank Ken Ono for suggesting this problem and providing advice. The authors are also grateful to Jesse Thorner for his help implementing Mathematica code that was used in the proof of Theorem 1.1. This research was supported by the National Science Foundation under Grant 1557960.


  1. 1.
    Chen, W.Y.C.: The SPT-function of Andrews. arXiv:1707.04369 (2017)
  2. 2.
    Chen, W.Y.C., Jia, D., Wang, L.: Higher order Turán inequalities for the partition function. arXiv:1706.10245 (2017)
  3. 3.
    Desalvo, S., Pak, I.: Log-concavity of the partition function. Ramanujan J. 38, 61–73 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Griffin, M., Ono, K., Rolen, L., Zagier, D.: Jensen polynomials for the Riemann zeta function and other sequences. PreprintGoogle Scholar
  5. 5.
    Hardy, G.H., Ramanujan, S.: Asymptotic formulae in combinatory analysis. Proc. Lond. Math. Soc. 17, 75–115 (1918)CrossRefGoogle Scholar
  6. 6.
    Jensen, J.L.W.V.: Recherches sur la théorie des équations. Acta Math. 36, 181–195 (1913)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Lehmer, D.H.: On the series for the partition function. Section 159, Zweiter Band, Teubner, Berlin (1909)Google Scholar
  8. 8.
    Nicolas, J.-L.: Sur les entiers \(N\) pour lesquels il y a beaucoup de groupes abéliens d?ordre \(N\). Ann. Inst. Fourier 28(4), 1–16 (1978)Google Scholar
  9. 9.
    Obrechkoff, N.: Zeros of polynomials. Publ. Bulg. Acad. Sci., Sofia, 1963 (in Bulgarian), English translation (by I. Dimovski and P. Rusev), The Marin Drinov Acad. Publ. House, Sofia (2003)Google Scholar
  10. 10.
    Pólya, G.: Über die algebraisch-funktionentheoretischen Untersuchungen von J. L. W. V. Jensen. Kgl. Danske Vid. Sel. Math.-Fys. Medd. 7, 3–33 (1927)Google Scholar
  11. 11.
    Szëgo, G.: Orthogonal polynomials Colloq. Publ. XXIII, Amer. Math. Soc., Providence (1939)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Emory UniversityAtlantaUSA

Personalised recommendations