Advertisement

An effective bound for the partition function

  • Narissara Khaochim
  • Riad MasriEmail author
  • Wei-Lun Tsai
Research
  • 58 Downloads

Abstract

We use the Bruinier–Ono formula to give an asymptotic formula for the partition function p(n) with an effective bound on the error term.

Keywords

Effective bounds Heegner points Partition function 

Notes

Acknowlegements

We would like to thank Matt Young for some very helpful conversations, and the referee for valuable suggestions.

Funding

Funding was provided by Simons Foundation (Grant No. 421991)

References

  1. 1.
    Abramowitz, M., Stegun, I.: Pocketbook of Mathematical Functions. Verlag Harri Deutsch, Haan (1984)zbMATHGoogle Scholar
  2. 2.
    Ahlgren, S., Andersen, N.: Algebraic and transcendental formulas for the smallest parts functions. Adv. Math. 289, 411–437 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bruinier, J.H., Ono, K.: Algebraic formulas for the coefficients of half-integral weight harmonic weak Maass forms. Adv. Math. 246, 198–219 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bruinier, J.H., Ono, K., Sutherland, A.V.: Class polynomials for nonholomorphic modular functions. J. Number Theory 161, 204–229 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chen, W.Y.: The spt-function of Andrews. In: Claesson, A. (ed.) Surveys in Combinatorics. London Mathematical Society Lecture Note Series, vol. 440, pp. 141–203. Cambridge University Press, Cambridge (2017)Google Scholar
  6. 6.
    Locus Dawsey, M., Masri, R.: Effective bounds for the Andrews smallest parts function. Forum Mathematicum (to appear). https://www.math.tamu.edu/~masri/spt-9-3-18.pdf
  7. 7.
    Dewar, M., Murty, R.: A derivation of the Hardy-Ramanujan formula from an arithmetic formula. Proc. Am. Math. Soc. 141, 1903–1911 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gross, B., Kohnen, W., Zagier, D.: Heegner points and derivatives of L-series. II. Math. Ann. 278, 497–562 (1987)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Iwaniec, H.: Spectral Methods of Automorphic Forms. American Mathematical Society, Providence, RI (2002)CrossRefGoogle Scholar
  10. 10.
    Khaochim, N., Masri, R., Tsai, W.-L.: Main term (2018). https://github.com/wltsai/Main-term.git
  11. 11.
    Kiral, E.M., Young, M.P.: Kloosterman sums and Fourier coefficients of Eisenstein series. Ramanujan J (2018).  https://doi.org/10.1007/s11139-018-0031-x
  12. 12.
    Lehmer, D.H.: On the remainders and convergence of the series for the partition function. Trans. Am. Math. Soc. 46, 362–373 (1939)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nemes, G.: Error bounds for the large-argument asymptotic expansions of the Hankel and Bessel functions. Acta Appl. Math. 150, 141–177 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V. (eds.): NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release 1.0.19 of 2018-06-22
  15. 15.
    Rademacher, H.: On the partition function \(p(n)\). Proc. Lond. Math. Soc. 43, 241–254 (1937)zbMATHGoogle Scholar
  16. 16.
    Stein, W.A., et al.: Sage Mathematics Software System (Version 8.2), The Sage Development Team, (2018). https://www.sagemath.com

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Texas A&M UniversityCollege StationUSA

Personalised recommendations