Advertisement

A note on multivariable \((\varphi ,\Gamma )\)-modules

  • Elmar Grosse-KlönneEmail author
Research

Abstract

Let \(F/{\mathbb Q}_p\) be a finite field extension, let k be a field of characteristic p. Fix a Lubin Tate group \(\Phi \) for F and let \(\Gamma _{\bullet }=\Gamma \times \cdots \times \Gamma \) with \(\Gamma ={\mathcal O}_F^{\times }\) act on \(k[[t_1,\ldots ,t_n]][\prod _it_i^{-1}]\) by letting \(\gamma _i\) (in the i-th factor \(\Gamma \)) act on \(t_i\) by insertion of \(t_i\) into the power series attached to \(\gamma _i\) by \(\Phi \). We show that \(k[[t_1,\ldots ,t_n]][\prod _it_i^{-1}]\) admits no non-trivial ideal stable under \(\Gamma _{\bullet }\), thereby generalizing a result of Zábrádi (who had treated the case where \(\Phi \) is the multiplicative group). We then discuss applications to \((\varphi ,\Gamma )\)-modules over \(k[[t_1,\ldots ,t_n]][\prod _it_i^{-1}]\).

Notes

Acknowlegements

I thank Gergely Zábrádi for his careful reading of an earlier draft of the proof of Theorem 1 and for further discussions on the topic. I thank the referees for their valuable comments.

References

  1. 1.
    Berger, L., Fourquaux, L.: Iwasawa theory and \(F\)-analytic Lubin–Tate \((\varphi,\Gamma )\)-modules. Doc. Math. 22, 999–1030 (2017)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Breuil, C.: Induction parabolique et \((\varphi,\Gamma )\)-mdoules. Algebra Number Theory 9, 2241–2291 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Fourquaux, L., Xie, B.: Triangulable \({\cal{O}}_F\)-analytic \((\varphi, \Gamma )\)-modules of rank \(2\). Algebra Number Theory 7(10), 2545–2592 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Grosse-Klönne, E.: Supersingular Hecke modules as Galois representations, preprint (2017)Google Scholar
  5. 5.
    Kisin, M., Ren, W.: Galois representations and Lubin–Tate groups. Doc. Math. 14, 441–461 (2009)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Schneider, P.: Galois representations and \((\varphi ,\Gamma )\)-modules, course at Münster in 2015. In: Cambridge Studies in Advanced Mathematics (2017)Google Scholar
  7. 7.
    Schneider, P., Venjakob, O.: Coates–Wiles homomorphisms and Iwasawa cohomology for Lubin–Tate extensions. In: Elliptic Curves, Modular Forms and Iwasawa Theory. Springer Proc. Math. Stat. 188, 401–468 (2016)Google Scholar
  8. 8.
    Zábrádi, G.: Multivariable \((\varphi ,\Gamma )\)-modules and products of Galois groups. Math. Res. Lett. (2016)Google Scholar
  9. 9.
    Zábrádi, G.: Multivariable \((\varphi,\Gamma )\)-modules and smooth \(o\)-torsion representations. Sel. Math. 24(2), 935–995 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© SpringerNature 2018

Authors and Affiliations

  1. 1.Humboldt-Universität zu Berlin, Institut für MathematikBerlinGermany

Personalised recommendations