Advertisement

Research in Number Theory

, 4:34 | Cite as

Average bounds for the \(\ell \)-torsion in class groups of cyclic extensions

  • Christopher Frei
  • Martin Widmer
Research

Abstract

For all positive integers \(\ell \), we prove non-trivial bounds for the \(\ell \)-torsion in the class group of K, which hold for almost all number fields K in certain families of cyclic extensions of arbitrarily large degree. In particular, such bounds hold for almost all cyclic degree-p-extensions of F, where F is an arbitrary number field and p is any prime for which F and the pth cyclotomic field are linearly disjoint. Along the way, we prove precise asymptotic counting results for the fields of bounded discriminant in our families with prescribed splitting behavior at finitely many primes.

Keywords

\(\ell \)-torsion Class group Number fields Small height 

Mathematics Subject Classification

Primary 11R29 11N36 11R45 Secondary 11G50 

References

  1. 1.
    Bhargava, M., Shankar, A., Taniguchi, T., Thorne, F., Tsimerman, J., Zhao, Y.: Bounds on 2-torsion in class groups of number fields and integral points on elliptic curves. Preprint (2017). arXiv:1701.02458v1
  2. 2.
    Blomer, V., Brumley, F.: On the Ramanujan conjecture over number fields. Ann. Math. (2) 174(1), 581–605 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chambert-Loir, A., Tschinkel, Yu.: Fonctions zêta des hauteurs des espaces fibrés. Rational Points on Algebraic Varieties. Progress in Mathematics, vol. 199, pp. 71–115. Birkhäuser, Basel (2001)CrossRefGoogle Scholar
  4. 4.
    Cohen, H., Martinet, J.: Étude heuristique des groupes de classes des corps de nombres. J. Reine Angew. Math. 404, 39–76 (1990)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Duke, E.: Bounds for arithmetic multiplicities. In: Proceedings of the International Congress of Mathematicians. Berlin (1998)Google Scholar
  6. 6.
    Ellenberg, J., Venkatesh, A.: Reflection principles and bounds for class group torsion. Int. Math. Res. Not. No. 1, Art. ID rnm002 (2007)Google Scholar
  7. 7.
    Ellenberg, J., Pierce, L.B., Wood, M.M.: On \(\ell \)-torsion in class groups of number fields. Algebra Number Theory 11(8), 1739–1778 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Frei, C., Loughran, D., Newton, R.: The Hasse norm principle for abelian extensions. Am. J. Math. (to appear)Google Scholar
  9. 9.
    Heath-Brown, D.R.: Hybrid bounds for Dirichlet \(L\)-functions. II. Q. J. Math. Oxf. Ser. (2) 31(122), 157–167 (1980)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Helfgott, H.A., Venkatesh, A.: Integral points on elliptic curves and 3-torsion in class groups. J. Am. Math. Soc. 19, 527–550 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Montgomery, H.L., Vaughan, R.C.: Multiplicative Number Theory. I. Classical Theory. Cambridge Studies in Advanced Mathematics, vol. 97. Cambridge University Press, Cambridge (2007)Google Scholar
  12. 12.
    Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers. Springer, Berlin (1980)zbMATHGoogle Scholar
  13. 13.
    Pierce, L.B.: 3-part of class numbers of quadratic fields. J. Lond. Math. Soc. 71, 579–598 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Pierce, L.B.: A bound for the 3-part of class numbers of quadratic fields by means of the square sieve. Forum Math. 18, 677–698 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Pierce, L.B., Turnage-Butterbaugh, C.L., Wood, M.M.: An effective Chebotarev density theorem for families of number fields, with an application to \(\ell \)-torsion in class groups. Preprint (2017). arXiv:1709.09637v1
  16. 16.
    Rome, N.: The Hasse Norm Principle For Biquadratic Extensions. Preprint (2017). arXiv:1707.00412v1
  17. 17.
    Roy, D., Thunder, J.L.: A note on Siegel’s lemma over number fields. Monatsh. Math. 120, 307–318 (1995)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Schanuel, S.H.: Heights in number fields. Bull. Soc. Math. Fr. 107, 433–449 (1979)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Schmidt, W.M.: Northcott’s Theorem on heights I. A general estimate. Monatsh. Math. 115, 169–183 (1993)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Silverman, J.: Lower bounds for height functions. Duke Math. J. 51, 395–403 (1984)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Vaaler, J.D., Widmer, M.: A note on small generators of number fields. In: Diophantine Methods, Lattices, and Arithmetic Theory of Quadratic Forms, Contemporary Mathematics, vol. 587. American Mathematical Society, Providence (2013)Google Scholar
  22. 22.
    Vaaler, J.D., Widmer, M.: Number fields without small generators. Math. Proc. Camb. Philos. Soc. 159(3), 379–385 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Widmer, M.: Counting primitive points of bounded height. Trans. Am. Math. Soc. 362, 4793–4829 (2010)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Widmer, M.: On number fields with nontrivial subfields. Int. J. Number Theory 7, 695–720 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Widmer, M.: Bounds for the \(\ell \)-torsion in class groups. Bull. Lond. Math. Soc. 50(1), 124–131 (2018)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Wright, D.J.: Distribution of discriminants of abelian extensions. Proc. Lond. Math. Soc. 3(1), 17–50 (1989)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Wu, H.: Burgess-like subconvexity for \(\text{GL}_1\). Preprint (2016). arXiv:1604.08551v3
  28. 28.
    Zhang, S.-W.: Equidistribution of CM-points on quaternion Shimura varieties. Int. Math. Res. Not. 59, 3657–3689 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© SpringerNature 2018

Authors and Affiliations

  1. 1.School of MathematicsUniversity of ManchesterManchesterUK
  2. 2.Department of Mathematics, Royal HollowayUniversity of LondonEghamUK

Personalised recommendations