Divisibility properties of sporadic Apéry-like numbers

Open Access


In 1982, Gessel showed that the Apéry numbers associated to the irrationality of ζ(3) satisfy Lucas congruences. Our main result is to prove corresponding congruences for all known sporadic Apéry-like sequences. In several cases, we are able to employ approaches due to McIntosh, Samol–van Straten and Rowland–Yassawi to establish these congruences. However, for the sequences labeled s18 and (η) we require a finer analysis.

As an application, we investigate modulo which numbers these sequences are periodic. In particular, we show that the Almkvist–Zudilin numbers are periodic modulo 8, a special property which they share with the Apéry numbers. We also investigate primes which do not divide any term of a given Apéry-like sequence.


Apéry-like numbers Lucas congruences p-adic properties 


  1. 1.
    Ahlgren, S: Gaussian hypergeometric series and combinatorial congruences. In: Symbolic computation, number theory, special functions, physics and combinatorics (Gainesville, FL, 1999), volume 4 of Dev. Math., pp. 1–12. Kluwer Acad. Publ., Dordrecht (2001).Google Scholar
  2. 2.
    Ahlgren, S, Ono, K: A Gaussian hypergeometric series evaluation and Apéry number congruences. J. für die reine und angewandte Mathematik. 2000(518), 187–212 (2000).MathSciNetGoogle Scholar
  3. 3.
    Almkvist, G, van Straten, D, Zudilin, W: Generalizations of Clausen’s formula and algebraic transformations of Calabi–Yau differential equations. Proc. Edinburgh Math. Soc. 54(2), 273–295 (2011).CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Almkvist, G, Zudilin, W: Differential equations, mirror maps and zeta values. In: Mirror symmetry. V, volume 38 of AMS/IP Stud. Adv. Math., pp. 481–515. Amer. Math. Soc., Providence, RI (2006).Google Scholar
  5. 5.
    Apéry, R: Irrationalité de ζ(2) et ζ(3). Astérisque. 61, 11–13 (1979).MATHGoogle Scholar
  6. 6.
    Beukers, F: Some congruences for the Apéry numbers. J. Number Theory. 21(2), 141–155 (1985).CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Beukers, F: Another congruence for the Apéry numbers. J. Number Theory. 25(2), 201–210 (1987).CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Beukers, F: On Dwork’s accessory parameter problem. Math. Z. 241(2), 425–444 (2002).CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Calkin, N: Factors of sums of powers of binomial coefficients. Acta Arithmetica. 86, 17–26 (1998).MathSciNetMATHGoogle Scholar
  10. 10.
    Chan, HH, Cooper, S, Sica, F: Congruences satisfied by Apéry-like numbers. Intl. J. Number Theory. 6(1), 89 (2010).CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Chowla, S, Cowles, J, Cowles, M: Congruence properties of Apéry numbers. J. Number Theory. 12(2), 188–190 (1980).CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Cooper, S: Sporadic sequences, modular forms and new series for 1/π. Ramanujan J. 29(1–3), 163–183 (2012).CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Coster, MJ: Supercongruences. PhD thesis, Universiteit Leiden (1988).Google Scholar
  14. 14.
    Deutsch, E, Sagan, BE: Congruences for Catalan and Motzkin numbers and related sequences. J. Number Theory. 117(1), 191–215 (2006).CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Egorychev, GP: Integral representation and the computation of combinatorial sums, volume 59 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI (1984). Translated from the Russian by H. H. McFadden, Translation edited by Lev J. Leifman.Google Scholar
  16. 16.
    Gessel, IM: Some congruences for Apéry numbers. J. Number Theory. 14(3), 362–368 (1982).CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Krattenthaler, C, Müller, TW: Generalised Apéry numbers modulo 9. J. Number Theory. 147, 708–720 (2015).CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Lucas, E: Sur les congruences des nombres Eulériens et des coefficients différentiels des fonctions trigonométriques, suivant un module premier. Bull. Soc. Math. France. 6, 49–54 (1878).MathSciNetMATHGoogle Scholar
  19. 19.
    McIntosh, RJ: A generalization of a congruential property of Lucas. Amer. Math. Monthly. 99(3), 231–238 (1992).CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    Mellit, A, Vlasenko, M: Dwork’s congruences for the constant terms of powers of a Laurent polynomial. Int. J Number Theory (2015). To appear doi:10.1142/S1793042116500184.
  21. 21.
    Osburn, R, Sahu, B: Supercongruences for Apéry-like numbers. Adv. Appl. Math. 47(3), 631–638 (2011).CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Osburn, R, Sahu, B: A supercongruence for generalized Domb numbers. Functiones et Approximatio Commentarii Mathematici. 48(1), 29–36 (2013).CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Osburn, R, Sahu, B, Straub, A: Supercongruences for sporadic sequences. Proc. Edinburgh Math Soc (2015). To appear doi:10.1017/S0013091515000255.
  24. 24.
    Poorten, AVD: A proof that Euler missed... Apéry’s proof of the irrationality of ζ(3). Math. Intelligencer. 1(4), 195–203 (1979).CrossRefMATHGoogle Scholar
  25. 25.
    Rowland, E, Yassawi, R: Automatic congruences for diagonals of rational functions. J. de Théorie des Nombres de Bordeaux. 27(1), 245–288 (2015).CrossRefMathSciNetGoogle Scholar
  26. 26.
    Samol, K, van Straten, D: Dwork congruences and reflexive polytopes. Annales mathématiques du Québec. 39(2), 185–203 (2015).CrossRefMathSciNetGoogle Scholar
  27. 27.
    Stienstra, J, Beukers, F: On the Picard-Fuchs equation and the formal Brauer group of certain elliptic K3-surfaces. Mathematische Annalen. 271(2), 269–304 (1985).CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    Straub, A: Multivariate Apéry numbers and supercongruences of rational functions. Algebra Number Theory. 8(8), 1985–2008 (2014).CrossRefMathSciNetMATHGoogle Scholar
  29. 29.
    Zagier, D: Integral solutions of Apery-like recurrences. In: Harnad, J, Winternitz, P (eds.)Groups and symmetries. From Neolithic to John McKay, volume 47. American Mathematical Society, Providence, RI (2009).Google Scholar

Copyright information

© The Author(s) 2016

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Mathematics and StatisticsUniversity of South AlabamaMobileUSA

Personalised recommendations