Advertisement

Divisibility properties of sporadic Apéry-like numbers

  • Amita Malik
  • Armin Straub
Open Access
Research

Abstract

In 1982, Gessel showed that the Apéry numbers associated to the irrationality of ζ(3) satisfy Lucas congruences. Our main result is to prove corresponding congruences for all known sporadic Apéry-like sequences. In several cases, we are able to employ approaches due to McIntosh, Samol–van Straten and Rowland–Yassawi to establish these congruences. However, for the sequences labeled s 18 and (η) we require a finer analysis.

As an application, we investigate modulo which numbers these sequences are periodic. In particular, we show that the Almkvist–Zudilin numbers are periodic modulo 8, a special property which they share with the Apéry numbers. We also investigate primes which do not divide any term of a given Apéry-like sequence.

Keywords

Apéry-like numbers Lucas congruences p-adic properties 

Notes

Acknowledgements

This paper builds on experimental results obtained together with Arian Daneshvar, Pujan Dave and Zhefan Wang during an Illinois Geometry Lab (IGL) project during the Fall 2014 semester at the University of Illinois at Urbana-Champaign (UIUC). The aim of the IGL is to introduce undergraduate students to mathematical research. We wish to thank Arian, Pujan and Zhefan (at the time undergraduate students in engineering at UIUC) for their great work. In particular, their experiments predicted Corollaries 5.1 and 5.2, and provided the data for Table 4, which lead to Conjecture 6.3.

We are also grateful to Eric Rowland, who visited UIUC in October 2014, for interesting discussions on Apéry-like numbers and finite state automata, as well as for observing the congruence (6.1).

Moreover, we would like to express our gratitude to Tewodros Amdeberhan, Bruce C. Berndt, Robert Osburn and Wadim Zudilin for many helpful comments and encouragement. Finally, we thank the two referees for their detailed and helpful suggestions.

References

  1. 1.
    Ahlgren, S: Gaussian hypergeometric series and combinatorial congruences. In: Symbolic computation, number theory, special functions, physics and combinatorics (Gainesville, FL, 1999), volume 4 of Dev. Math., pp. 1–12. Kluwer Acad. Publ., Dordrecht (2001).Google Scholar
  2. 2.
    Ahlgren, S, Ono, K: A Gaussian hypergeometric series evaluation and Apéry number congruences. J. für die reine und angewandte Mathematik. 2000(518), 187–212 (2000).MathSciNetGoogle Scholar
  3. 3.
    Almkvist, G, van Straten, D, Zudilin, W: Generalizations of Clausen’s formula and algebraic transformations of Calabi–Yau differential equations. Proc. Edinburgh Math. Soc. 54(2), 273–295 (2011).CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Almkvist, G, Zudilin, W: Differential equations, mirror maps and zeta values. In: Mirror symmetry. V, volume 38 of AMS/IP Stud. Adv. Math., pp. 481–515. Amer. Math. Soc., Providence, RI (2006).Google Scholar
  5. 5.
    Apéry, R: Irrationalité de ζ(2) et ζ(3). Astérisque. 61, 11–13 (1979).zbMATHGoogle Scholar
  6. 6.
    Beukers, F: Some congruences for the Apéry numbers. J. Number Theory. 21(2), 141–155 (1985).CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Beukers, F: Another congruence for the Apéry numbers. J. Number Theory. 25(2), 201–210 (1987).CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Beukers, F: On Dwork’s accessory parameter problem. Math. Z. 241(2), 425–444 (2002).CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Calkin, N: Factors of sums of powers of binomial coefficients. Acta Arithmetica. 86, 17–26 (1998).MathSciNetzbMATHGoogle Scholar
  10. 10.
    Chan, HH, Cooper, S, Sica, F: Congruences satisfied by Apéry-like numbers. Intl. J. Number Theory. 6(1), 89 (2010).CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Chowla, S, Cowles, J, Cowles, M: Congruence properties of Apéry numbers. J. Number Theory. 12(2), 188–190 (1980).CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Cooper, S: Sporadic sequences, modular forms and new series for 1/π. Ramanujan J. 29(1–3), 163–183 (2012).CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Coster, MJ: Supercongruences. PhD thesis, Universiteit Leiden (1988).Google Scholar
  14. 14.
    Deutsch, E, Sagan, BE: Congruences for Catalan and Motzkin numbers and related sequences. J. Number Theory. 117(1), 191–215 (2006).CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Egorychev, GP: Integral representation and the computation of combinatorial sums, volume 59 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI (1984). Translated from the Russian by H. H. McFadden, Translation edited by Lev J. Leifman.Google Scholar
  16. 16.
    Gessel, IM: Some congruences for Apéry numbers. J. Number Theory. 14(3), 362–368 (1982).CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Krattenthaler, C, Müller, TW: Generalised Apéry numbers modulo 9. J. Number Theory. 147, 708–720 (2015).CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Lucas, E: Sur les congruences des nombres Eulériens et des coefficients différentiels des fonctions trigonométriques, suivant un module premier. Bull. Soc. Math. France. 6, 49–54 (1878).MathSciNetzbMATHGoogle Scholar
  19. 19.
    McIntosh, RJ: A generalization of a congruential property of Lucas. Amer. Math. Monthly. 99(3), 231–238 (1992).CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Mellit, A, Vlasenko, M: Dwork’s congruences for the constant terms of powers of a Laurent polynomial. Int. J Number Theory (2015). To appear doi:10.1142/S1793042116500184.
  21. 21.
    Osburn, R, Sahu, B: Supercongruences for Apéry-like numbers. Adv. Appl. Math. 47(3), 631–638 (2011).CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Osburn, R, Sahu, B: A supercongruence for generalized Domb numbers. Functiones et Approximatio Commentarii Mathematici. 48(1), 29–36 (2013).CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Osburn, R, Sahu, B, Straub, A: Supercongruences for sporadic sequences. Proc. Edinburgh Math Soc (2015). To appear doi:10.1017/S0013091515000255.
  24. 24.
    Poorten, AVD: A proof that Euler missed... Apéry’s proof of the irrationality of ζ(3). Math. Intelligencer. 1(4), 195–203 (1979).CrossRefzbMATHGoogle Scholar
  25. 25.
    Rowland, E, Yassawi, R: Automatic congruences for diagonals of rational functions. J. de Théorie des Nombres de Bordeaux. 27(1), 245–288 (2015).CrossRefMathSciNetGoogle Scholar
  26. 26.
    Samol, K, van Straten, D: Dwork congruences and reflexive polytopes. Annales mathématiques du Québec. 39(2), 185–203 (2015).CrossRefMathSciNetGoogle Scholar
  27. 27.
    Stienstra, J, Beukers, F: On the Picard-Fuchs equation and the formal Brauer group of certain elliptic K3-surfaces. Mathematische Annalen. 271(2), 269–304 (1985).CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    Straub, A: Multivariate Apéry numbers and supercongruences of rational functions. Algebra Number Theory. 8(8), 1985–2008 (2014).CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Zagier, D: Integral solutions of Apery-like recurrences. In: Harnad, J, Winternitz, P (eds.)Groups and symmetries. From Neolithic to John McKay, volume 47. American Mathematical Society, Providence, RI (2009).Google Scholar

Copyright information

© The Author(s) 2016

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Mathematics and StatisticsUniversity of South AlabamaMobileUSA

Personalised recommendations