Research in Number Theory

, 1:23 | Cite as

A Gross–Kohnen–Zagier type theorem for higher-codimensional Heegner cycles

Open Access
Research

Abstract

We prove that the Heegner cycles of codimension m+1 inside Kuga-Sato type varieties of dimension 2m+1 are coefficients of modular forms of weight 3/2+m in the appropriate quotient group. The main technical tool for generating the necessary relations is a Borcherds style theta lift with polynomials. We also show how this lift defines a new singular Shimura-type correspondence from weakly holomorphic modular forms of weight 1/2−m to meromorphic modular forms of weight 2m+2.

References

  1. 1.
    Besser, A: CM cycles over Shimura curves. J. Algebraic Geometry. 4, 659–692 (1993).MathSciNetGoogle Scholar
  2. 2.
    Borcherds, RE: Automorphic forms with singularities on Grassmannians. Invent. Math. 132, 491–562 (1998).MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Borcherds, RE: The Gross–Kohnen–Zagier Theorem in higher dimensions. Duke Math J. 97(2), 219–233 (1999). Correction: Duke Math J., vol 105 no. 1, 183–184 (2000).MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bringmann, K, Kane, B: Cycle integrals of meromorphic modular forms and CM-values of automorphic forms, submitted for publication.a.i. http://arxiv.org/abs/1409.0793.
  5. 5.
    Bringmann, K, Kane, B, Kohnen, W: Locally harmonic Maass forms and the kernel of the Shintani lift. Int. Math. Res. Not. 2015(11), 3185–3224 (2015).MathSciNetGoogle Scholar
  6. 6.
    Bruinier, JH: Borcherds products on O(2,l) and Chern classes of Heegner divisors, Lecture Notes in Mathematics 1780, p. 154. Springer–Verlag, Berlin, Heidelberg, New York (2002).Google Scholar
  7. 7.
    Bruinier, JH, Funke, J: On two geometric theta lifts. Duke Math J. 125(1), 45–90 (2004).MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Bruinier, JH, Ono, K: Heeger divisors, L-Functions, and harmonic weak maass forms. Ann. Math. 172, 2135–2181 (2010).MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Bruinier, JH, van der Geer, G, Harder, G, Zagier, D: The 1-2-3 of Modular Forms, p. 266. Springer–Verlag, Berlin, Heidelberg (2008).Google Scholar
  10. 10.
    Brylinski, J-L: Heights for local systems on curves. Duke Math. J. 105(1), 1–26 (1989).MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cohen, H: Sums Involving the Values at Negative Integers of L-Functions of Quadratic Characters. Math. Ann. 217, 171–185 (1975).CrossRefGoogle Scholar
  12. 12.
    Eichler, M, Zagier, D: The theory of Jacobi forms. Progress in Mathematics, vol. 55, Birkhäuser, Boston, Basel, Stuttgart (1985).Google Scholar
  13. 13.
    Funke, J, Millson, JJ: Cycles with local coefficients for orthogonal groups and vector-valued Siegel modular forms. Am. J. Math.128, 899–948 (2006).MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Funke, J, Millson, JJ: Spectacle cycles with coefficients and modular forms of half-integral weight, in Arithmetic Geometry and Automorphic Forms, in honor of Stephen S. Kudla. Higher Eduction Press and International Press (2011).Google Scholar
  15. 15.
    Gross, B, Kohnen, W, Zagier, D: Heegner points and derivatives of L-Series, II. Math. Ann. 278(1–4), 497–562 (1987).MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Hirzebruch, F, Zagier, D: Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus. Invent. Math.36, 57–114 (1976).MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Hopkins, K: Higher weight Heegner points. Exp. Math.19(3), 257–266 (2010).MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Kohnen, W: Modular forms of half-integral weight on Γ 0(4). Math. Ann.248, 249–266 (1980).MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    McGraw, WJ: Rationality of vector valued modular forms associated to the weil representation. Math. Annalen. 326, 105–122 (2003).MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Milne, J: Abelian Varieties (v2.00), 166+vi (2008). Available on www.jmilne.org/math/.
  21. 21.
    Nakajima, S: On invariant differential operators on bounded symmetric domains of type IV. Proc. Japan Acad.58(Ser. A), 235–238 (1982).MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Scheithauer, NR: The Weil representation of \(SL_{2}(\mathbb {Z})\) and some applications. Int. Math. Res. Not.2009(8), 1488–1545 (2009).MATHMathSciNetGoogle Scholar
  23. 23.
    Schoen, C: Complex multiplication cycles on elliptic modular threefolds. Duke Math. J.53, 771–794 (1986).MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Scholl, AJ: Fourier coefficients of Eisenstein series on non-congruence subgroups. Math. Proc. Camb. Phil. Soc.99, 11–17 (1986).MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Shintani, T: On Construction of Holomorphic Cusp Forms of Half Integral Weight. Nagoya Math. J.58, 83–126 (1975).MATHMathSciNetGoogle Scholar
  26. 26.
    Strömberg, F: Weil Representations Associated to Finite Quadratic Modules. Math. Z. 275(1), 509–527 (2013).MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Vignéras, MF: Arithmétique des Algèbres des Quaternions, Lecture Note in Math. 800 (1980).Google Scholar
  28. 28.
    Zemel, S: A p-adic approach to the weil representation of discriminant forms arising from even lattices. Math. Ann. Québec. 39(1), 61–89 (2015).MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zemel, S: Weight changing operators for automorphic forms on grassmannians and differential properties of certain theta lifts, submitted for publication. a.i. http://arxiv.org/abs/1409.0793.Google Scholar
  30. 30.
    Zemel, S: Regularized Pairings of Meromorphic Modular Forms and Theta Lifts, submitted for publication. a.i. http://arxiv.org/abs/1409.0793.Google Scholar
  31. 31.
    Zhang, S: Heights of Heegner Cycles and Derivatives of L-Series. Invent. Math.130(1), 99–152 (1997).MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Einstein Institute of Mathematicsthe Hebrew University of Jerusalem, Edmund Safra CampusJerusalemIsrael

Personalised recommendations