Advertisement

Spatial Analysis of Mortality by Cardiovascular Disease in the Adult Population: A Study for Brazilian Micro-Regions Between 1996 and 2015

  • Emerson Augusto BaptistaEmail author
  • Bernardo Lanza Queiroz
Article

Abstract

Cardiovascular disease (CVD) is one of the most serious health issues and the leading cause of death worldwide in both developed and developing countries, including Brazil. However, CVD mortality rates are not uniformly distributed across the country. Brazil is marked by important regional differences resulting from socioeconomic inequality and limited access to health services. Mortality varies in a number of dimensions including age, sex, race, socioeconomic status, educational level and geography/space. Geographic inequalities in mortality in Brazil appear to be greater than other countries in Latin America. Given the spatial distribution of causes and heterogeneity of deaths from cardiovascular disease in Brazil, both at macro and micro levels, the goal of this paper is to evaluate the spatial patterns of deaths from CVD in the adult population (over 30 years of age), by sex, in Brazilian micro-regions from 1996 to 2015. Our main contribution was to study an important cause of death in small areas (micro-regions), taking into consideration space, as a proxy of socioeconomic conditions, access to health care and social norms that might affect CVD, as an important variable to understand changes in the CVD mortality.

Keywords

Spatial analysis Mortality Cardiovascular mortality Demography Brazilian micro-regions Spatial autocorrelation 

Notes

Funding

Financial support from CNPq, Project “Estimating Mortality by causes in small areas in Brazil” - 421183/2018-7.

Compliance with Ethical Standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. Agostinho, C. S. (2009). Estudo sobre a mortalidade adulta, para Brasil entre 1980 e 2000 e Unidades da Federação em 2000: uma aplicação dos métodos de distribuição de mortes. In Tese de Doutorado. Tese (Doutorado em Demografia)–Centro de Desenvolvimento e Planejamento Regional (p. 243). Universidade Federal de Minas Gerais, Belo Horizonte.Google Scholar
  2. Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis, 27, 91–115.Google Scholar
  3. Anselin, L. (1996). The moran scatterplot as an ESDA tool to assess local instability in spatial association. In Manfred Fischer, Henk Scholten, & David Unwin (Eds.), Spatial analytical perspectives on GIS in environmental and socio-economic sciences (pp. 111–125). London: Taylor and Francis.Google Scholar
  4. Anselin, L. (2005). Exploring spatial data with GeoDa: a workbook. Revised version April 21, 2018. In Center for spatially integrated social science. University of Illinois, Urbana-Champaign. Available in: http://www.csiss.org.
  5. Asaria, P., Fortunato, L., Fecht, D., Tzoulaki, I., Abellan, J. J., Hambly, P., et al. (2012). Trends and inequalities in cardiovascular disease mortality across 7932 English electoral wards, 1982–2006: Bayesian spatial analysis. International Journal of Epidemiology, 41(6), 1737–1749.CrossRefGoogle Scholar
  6. Bagheri, N., et al. (2015). Community cardiovascular disease risk from cross-sectional general practice clinical data: a spatial analysis. Preventing Chronic Disease, 12, 140379.CrossRefGoogle Scholar
  7. Baptista, E. A., Queiroz, B. L., & Rigotti, J. I. R. (2018). Decomposition of mortality rates from cardiovascular disease in the adult population: a study for Brazilian micro-regions between 1996 and 2015. Revista Brasileira de Estudos de População.  https://doi.org/10.20947/s102-3098a0050 Google Scholar
  8. Barbieri, M., Ouellette, N., Andreeva, M., Riffe, T., & Vinant, C. (2015). The cardiovascular revolution in the United States: a geographic analysis. Presented at the Annual Meeting of the Population Association of America, San Diego, California, May 2–4. https://paa2015.princeton.edu/papers/153514
  9. Bennett, N. G., & Horiuchi, S. (1981). Estimating the completeness of death registration in a closed population. Population Studies, 47(2), 207–221.Google Scholar
  10. Borges, G. M. (2017). Health transition in Brazil: regional variations and divergence/convergence in mortality. Cadernos de Saúde Pública, 33(8), E00080316.CrossRefGoogle Scholar
  11. Brant, L. C. C., Nascimento, B. R., Passos, V. M., Duncan, B. B., Bensenõr, I. J., Malta, D. C., et al. (2017). Variations and particularities in cardiovascular disease mortality in Brazil and Brazilian states in 1990 and 2015: estimates from the global burden of disease. Revista Brasileira de Epidemiologia., 20, 116–128.CrossRefGoogle Scholar
  12. Câmara, G., Monteiro, A. M., Druck, S., & Carvalho, M. S. (2004). Análise espacial e geoprocessamento. In G. Câmara, A. M. Monteiro, S. Druck, & M. S. Carvalho (Eds.), Análise espacial de dados geográficos. Distrito Federal: Planaltina.Google Scholar
  13. Castanho, V. S., Oliveira, L. S., Pinheiro, H. P., Oliveira, H. C., & De Faria, E. C. (2001). Sex differences in risk factors for coronary heart disease: a study in a Brazilian population. BMC public health, 1(1), 3.CrossRefGoogle Scholar
  14. Castro, M. C. (2007). Spatial demography: an opportunity to improve policy making at diverse decision levels. Population Research and Policy Review, 26(5–6), 477–509.CrossRefGoogle Scholar
  15. Chen, W. W., Gao, R. L., Liu, L. S., et al. (2017). China cardiovascular diseases report 2015: a summary. Journal of Geriatric Cardiology: JGC, 14(1), 1–10.  https://doi.org/10.11909/j.issn.1671-5411.2017.01.012.Google Scholar
  16. Dyakova, M., Shipkovenska, E., Dyakov, P., Dimitrov, P., & Torbova, S. (2008). Cardiovascular risk assessment of bulgarian urban population: cross-sectional study. Croatian Medical Journal, 49(6), 783–791.CrossRefGoogle Scholar
  17. Fenelon, A. (2013). Geographic divergence in mortality in the United States. Population and development review, 39(4), 611–634.CrossRefGoogle Scholar
  18. França, E. B., et al. (2008). Evaluation of cause-of-death statistics for Brazil, 2002–2004. International Journal of Epidemiology, 37(4), 891–901.CrossRefGoogle Scholar
  19. França, E. B., et al. (2017). Cause-specific mortality for 249 causes in Brazil and states during 1990–2015: a systematic analysis for the global burden of disease study 2015. Population Health Metrics, 15(1), 39.CrossRefGoogle Scholar
  20. Freire, F. H. M. A., Souza, F. H., Queiroz, B. L., Lima, E. E. C., & Gonzaga, M. R. (2014). Tabelas de sobrevivência para os municípios brasileiros em 2010: análise espacial do padrão e nível de mortalidade. In Encontro nacional de estudos populacionais: População, Governança e Bem-Estar, 24 a 28 de novembro de 2014/São Pedro, SP: ABEP, 2014.19. São Pedro, São Paulo. https://www.abep.org.br/publicacoes/index.php/anais/article/viewFile/2122/2078
  21. Frenk, J., Bobadilla, J. L., & Lozano, R. (1996). The epidemiological transition in Latin America. Adult Mortality in Latin America, 123, 485–496.Google Scholar
  22. Global Burden of Disease Collaborative Network. (2017). Global burden of disease study 2016 (GBD 2016) Results. Seattle, United States: Institute for Health Metrics and Evaluation (IHME). Available from http://ghdx.healthdata.org/gbd-results-tool.
  23. Godoy, M. F., Lucena, J. M., Miquelin, A. R., Paiva, F. F., Oliveira, D. L., Augustin Junior, J. L., et al. (2007). Mortalidade por doenças cardiovasculares e níveis socioeconômicos na população de São José do Rio Preto, Estado de São Paulo, Brasil. Arquivos Brasileiros de Cardiologia, 88(2), 200–206.CrossRefGoogle Scholar
  24. Guimarães, R. M., et al. (2015). Regional differences in cardiovascular mortality transition in brazil, 1980 to 2012. Revista Panamericana de Salud Pública, 37(2), 83–89.Google Scholar
  25. Hecht, L. (2014). Understanding the power of spatial analysis. Available from https://blogs.esri.com/esri/esri-insider/2014/10/17/understanding-the-power-of-spatial-analysis/. Access in: June 26, 2018.
  26. Hill, K. (1987). Estimating census and death registration completeness. Asian and Pacific Census Forum, 1(3), 8–13.Google Scholar
  27. Hill, K., You, D., & Choi, Y. (2009). Death distribution methods for estimating adult mortality: sensitivity analysis with simulated data errors. Demographic Research, 21(9), 235–254.CrossRefGoogle Scholar
  28. Ishitani, L. H., et al. (2006). Desigualdade social e mortalidade precoce por doenças cardiovasculares no Brasil. Rev Saúde Pública, 40(4), 684–691.CrossRefGoogle Scholar
  29. Jerrett, M., et al. (2005). Spatial analysis of air pollution and mortality in Los angeles. Epidemiology, 16(6), 727–736.CrossRefGoogle Scholar
  30. Journal of Spatial Demography (2013). Available from: http://spatialdemography.org/. Access in: March 03, 2014.
  31. Kihal-Talantikite, W., et al. (2017). Developing a data-driven spatial approach to assessment of neighbourhood influences on the spatial distribution of myocardial infarction. International Journal of Health Geographics, 16, 017–0094.CrossRefGoogle Scholar
  32. Langford, M., & Unwin, D. J. (1994). Generating and mapping population density surfaces within a geographical information system. Cartographic Journal, 31, 21–25.CrossRefGoogle Scholar
  33. Lima, E. E. C., & Queiroz, B. L. (2014). Evolution of the deaths registry system in Brazil: associations with changes in the mortality profile, under-registration of death counts, and ill-defined causes of death. Cadernos de Saúde Pública (ENSP. Impresso), 30, 1721–1730.CrossRefGoogle Scholar
  34. Lima, E. E. C., Queiroz, B. L., & Sawyer, D. (2014). Método de estimação de grau de cobertura em pequenas áreas: uma aplicação nas microrregiões mineiras. Cadernos Saúde Coletiva (UFRJ), 22, 409–418.CrossRefGoogle Scholar
  35. Lopez, A. D., et al. (1995). Adult mortality in developed countries: from description to explanation. Oxford: Oxford University Press.Google Scholar
  36. Lopez, A. D., et al. (2006a). Measuring the global burden of disease and risk factors, 1990–2001. Global Burden of Disease and Risk Factors, 1, 1–14.Google Scholar
  37. Lopez, A. D., et al. (2006b). Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. The Lancet, 367(9524), 1747–1757.CrossRefGoogle Scholar
  38. Lotufo, P. A. (2000). Mortalidade pela doença cerebrovascular no Brasil. [Stroke: mortality rates in Brazil]. Rev Bras Hiperten, 7(4), 387–391.Google Scholar
  39. Lozano, R., Naghavi, M., Foreman, K., et al. (2012). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet, 2012(380), 2095–2128.CrossRefGoogle Scholar
  40. Luy, M. A. (2010). Classification of the nature of mortality data underlying the estimates for the 2004 and 2006 united nations’ world population prospects. Comparative Population Studies, 35(2), 315–334.Google Scholar
  41. Malta, D. C., Moura, L., Prado, R. R., Escalante, J. C., Schmidt, M. I., & Duncan, B. B. (2014). Mortalidade por doenças crônicas não transmissíveis no Brasil e suas regiões, 2000 a 2011. Epidemiol Serv Saúde, 2014(23), 599–608.CrossRefGoogle Scholar
  42. Mansur, A. P., Souza, M. F., Timerman, A., & Ramires, J. A. (2002). Trends of the risk of death due to circulatory, cerebrovascular and ischemic heart disease in 11 Brazilian capitals from 1980 to 1998. Arquivos Brasileiros de Cardiologia, 79, 269–284.CrossRefGoogle Scholar
  43. Marmot, M. (2010). Fair society, healthy lives. In M. Marmot (Ed.), Strategic review of health inequalities in England post-2010. London: Department of Health.Google Scholar
  44. Mathers, C. D., Ma Fat, D., Inoue, M., Rao, C., & Lopez, A. D. (2005). Counting the dead and what they died from: an assessment of the global status of cause of death data. Bulletin of the Word Health Organization, 83(3), 171–179.Google Scholar
  45. Melo, E. C. P., Carvalho, M. S., & Travassos, C. (2006). Distrituição espacial da mortalidade por infarto agudo do miocárdio no Município do Rio de Janeiro. Brasil. Cadernos de Saúde Pública, 22(6), 1225–1236.CrossRefGoogle Scholar
  46. Messner, S. F., & Anselin, L. (2004). Spatial analyses of homicide with areal data. Spatially integrated social science., 12, 127–144.Google Scholar
  47. Ministério Da Saúde. Sistema de Informações sobre Mortalidade (SIM). Disponível em: http://www2.datasus.gov.br/DATASUS/index.php?area=0205 [acesso em 22 Março 2018].
  48. Murray, C. J. L., & Lopez, A. D. (1996). Estimating causes of death: new methods and global and regional applications for 1990. In C. J. L. Murray & A. D. Lopez (Eds.), The global burden of disease: a comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020 (pp. 117–200). Harvard: Harvard School of Public Health.Google Scholar
  49. Nowbar, A. N., Howard, J. P., Finegold, J. A., Asaria, P., & Francis, D. P. (2014). Global geographic analysis of mortality from ischaemic heart disease by country, age and income: statistics from World Health Organisation and United Nations. International Journal of Cardiology, 174(2), 293–298.CrossRefGoogle Scholar
  50. Paes, N. A. (2005). Avaliação da cobertura dos registros de óbitos dos estados brasileiros em 2000. Revista de Saúde Pública, 39(6), 882–890.CrossRefGoogle Scholar
  51. Paes, N. A. (2007). Qualidade das estatísticas de óbitos por causas desconhecidas dos Estados brasileiros. Revista de Saúde Pública, 41(3), 436–445.CrossRefGoogle Scholar
  52. Queiroz, B. L., & Lima, E. E. C. (2011). The road towards better vital registration systems: under-registration of death counts and ill-defined causes of death in Brazil. In The lancet global health metrics and evaluation conference controversies, innovation, accountability, 2011, Seattle.Google Scholar
  53. Queiroz, B. L., et al. (2017). Completeness of death-count coverage and adult mortality (45q15) for Brazilian states from 1980 to 2010. Revista Brasileira de Epidemiologia, 20, 21–33.CrossRefGoogle Scholar
  54. Rasella, D., et al. (2014). Impact of primary health care on mortality from heart and cerebrovascular diseases in Brazil: a nationwide analysis of longitudinal data. BMJ, 349, 4014.CrossRefGoogle Scholar
  55. Raymer, J., Willikens, F., & Rodgers, A. (2018). Spatial demography: a unifying core and agenda for further research. Population, Space and Place.  https://doi.org/10.1002/psp.2179.Google Scholar
  56. Reddy, K. S., & Yusuf, S. (1998). Emerging epidemic of cardiovascular disease in developing countries. Circulation, 97(6), 596–601.CrossRefGoogle Scholar
  57. Ribeiro, A. G., Cotta, R. M. M., & Ribeiro, S. M. R. (2012). A promoção da saúde e a prevenção integrada dos fatores de risco para doenças cardiovasculares. Ciência & Saúde Coletiva, 17, 7–17.CrossRefGoogle Scholar
  58. Ribeiro, A. L. P., Duncan, B. B., Brant, L. C., Lotufo, P. A., Mill, J. G., & Barreto, S. M. (2016). Cardiovascular health in Brazil: trends and perspectives. Circulation, 133(4), 422–433.CrossRefGoogle Scholar
  59. Roth, G. A., et al. (2015). Demographic and epidemiologic drivers of global cardiovascular mortality. New England Journal of Medicine, 372(14), 1333–1341.CrossRefGoogle Scholar
  60. Roth, G. A., et al. (2017a). Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. Journal of the American College of Cardiology, 70(1), 1–25.CrossRefGoogle Scholar
  61. Roth, G. A., et al. (2017b). Trends and patterns of geographic variation in cardiovascular mortality among US counties, 1980–2014. JAMA, 317(19), 1976–1992.CrossRefGoogle Scholar
  62. Sampson, R. J., & Morenoff, J. D. (2004). Spatial (dis)advantage and homicide in Chicago neighborhoods. In M. F. Goodchild & D. G. Janelle (Eds.), Spatially integrated social science (pp. 145–170). Oxford, England: Oxford University Press.Google Scholar
  63. Schmertmann, C. P., & Gonzaga, M. R. (2018). Bayesian estimation of age-specific mortality and life expectancy for small areas with defective vital records. Demography, 55(4), 1363–1388.CrossRefGoogle Scholar
  64. Souza, M. D. F. M. D., et al. (2001). Trends in the risk of mortality due to cardiovascular diseases in five Brazilian geographic regions from 1979 to 1996. Arquivos Brasileiros de Cardiologia, 77(6), 569–575.Google Scholar
  65. Souza, M. D. F. M. D., et al. (2018). Changes in health and disease in Brazil and its States in the 30 years since the unified healthcare system (SUS) was created. Ciencia & Saude Coletiva, 23(6), 1737–1750.CrossRefGoogle Scholar
  66. Timaeus, I. M. (1991). Measurement of adult mortality in less developed countries: a comparative review. Population Index, 57(4), 552–568.CrossRefGoogle Scholar
  67. Timaeus, I. M. (1993). Adult mortality. In K. A. Foote, K. H. Hill, & L. G. Martin (Eds.), Demographic change in Sub-Saharan Africa (pp. 218–255). Washington (D.C.): National Academy Press.Google Scholar
  68. Tobler, W. R. (1970). A computer movie simulating urban growth in the detroit region. Economic Geography, 46, 234–240.CrossRefGoogle Scholar
  69. Vallin, J., & Meslé, F. (2004). Convergences and divergences in mortality. A new approach to health transition. Demographic Research, Special Collection, 2(2), 11–44.CrossRefGoogle Scholar
  70. Weeks, J. R. (2004). The role of spatial analysis in demographic research. In M. F. Goodchild & D. G. Janelle (Eds.), Spatially integrated social science (pp. 381–399). New York: Oxford University Press.Google Scholar
  71. World Health Organization—Noncommunicable Diseases (NCD) Country Profiles. (2014).Google Scholar
  72. Yang, T.-C., Teng, H.-W., & Haran, M. (2009). The impacts of social capital on infant mortality in the US: a spatial investigation. Applied Spatial Analysis and Policy, 2(3), 211–227.CrossRefGoogle Scholar
  73. Yusuf, S., Reddy, S., Ôunpuu, S., & Anand, S. (2001a). Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation, 104(22), 2746–2753.CrossRefGoogle Scholar
  74. Yusuf, S., Reddy, S., Ôunpuu, S., & Anand, S. (2001b). Global burden of cardiovascular diseases: part II: variations in cardiovascular disease by specific ethnic groups and geographic regions and prevention strategies. Circulation, 104(23), 2855–2864.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Asian Demographic Research InstituteShanghai UniversityShanghaiChina
  2. 2.Universidade Federal de Minas Gerais / CedeplarBelo HorizonteBrazil

Personalised recommendations