Population Ageing in Italy: An Empirical Analysis of Change in the Ageing Index Across Space and Time

Article
  • 16 Downloads

Abstract

Population ageing is one of the most important demographic phenomena of this century. Driven by fertility decline and the continuing extension of the life expectancy, the process of population ageing has not been uniform across time and space. Italy has one of the oldest populations in the world. The combination of a very old population and large territorial differences has made Italy an interesting laboratory for studying population ageing. The purpose of this paper is to study how population ageing developed between 2002 and 2014 across different geographical areas within Italy. We analyse patterns of population ageing across the five major socio-economic regions using the 110 provinces of Italy as our spatial units of analysis. We use a statistical model that integrates patterns of variation of population ageing data by accounting for autocorrelation in space and time. The results indicate that the provincial age structures tend to converge and demonstrate the importance of considering the role of space in studies of population ageing.

Keywords

Auto correlation Space–time analysis Italy Population ageing 

References

  1. Anselin, L. (1988). Spatial econometrics: Methods and models. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  2. Bagautdinova, N. G., Panasyuk, M. V., Pudovik, E. M., & Gilmanova, A. (2014). Multivariate statistic analysis of the world population ageing. Mediterranean Journal of Social Sciences, 5(28), 50–55.Google Scholar
  3. Baltagi, B. H., Song, S. H., & Koh, W. (2003). Testing panel data regression models with spatial error correlation. Journal of Econometrics, 117(1), 123–150.CrossRefGoogle Scholar
  4. De Castro, M. C. (2007). Spatial demography: An opportunity to improve policy making at diverse decision levels. Population Research and Policy Review, 26(5–6), 477–509.CrossRefGoogle Scholar
  5. Elhorst, J. P. (2003). Specification and estimation of spatial panel data models. International Regional Science Review, 26(3), 244–268.CrossRefGoogle Scholar
  6. Elhorst, J., & Freret, S. (2009). Yardstick competition among local governments: French evidence using a two-regimes spatial panel data model. Journal of Regional Science, 49(5), 931–951.CrossRefGoogle Scholar
  7. Golini, A., Basso, S., & Reynaud, C. (2003). L’invecchiamento della popolazione in Italia: Una sfida per il paese e un laboratorio per il mondo. Giornale di Gerontologia, 51, 528–544.Google Scholar
  8. Goodchild, M. F., Anselin, L., Appelbaum, R. P., & Harthorn, B. H. (2000). Toward spatially integrated social science. International Regional Science Review, 23(2), 139–159.CrossRefGoogle Scholar
  9. Heleniak, T. (2003). Geographic aspects of population aging in the Russian Federation. Eurasian Geography and Economics, 44(5), 325–347.CrossRefGoogle Scholar
  10. Howell, F. M., Porter, J. R., & Matthews, S. A. (2016). Recapturing space: New middle-range theory in spatial demography. Berlin: Springer.CrossRefGoogle Scholar
  11. ISTAT. (2006). Ricostruzione della popolazione residente per età e sesso nei comuni italiani. In Informazioni, Roma (vol. 13).Google Scholar
  12. Kacerova, M., Ondackova, J., & Jozef, M. (2014). Time-space differences of population ageing in Europe. Hungarian Geographical Bulletin, 63(2), 177–199.CrossRefGoogle Scholar
  13. Kinsella, K. G., & Phillips, D. R. (2005). Global aging: The challenge of success. Washington, DC: Population Reference Bureau.Google Scholar
  14. Kurek, S. (2003). Spatial distribution of population ageing in Poland in the years 1988–2001. Bulletin of Geography. Socio-Economic Series, 2, 65–75.Google Scholar
  15. Kurek, S. (2011). Double transitions? Regional patterns of population ageing in Poland. Geografiska Annaler: Series B, 93(2), 163–184.CrossRefGoogle Scholar
  16. Lobao, L. (2004). Continuity and change in place stratification: Spatial inequality and middle-range territorial units. Rural Sociology, 69(1), 1–30.CrossRefGoogle Scholar
  17. Millo, G., & Piras, G. (2012). Splm: Spatial panel data models in R. Journal of Statistical Software, 47(1), 1–38.CrossRefGoogle Scholar
  18. Moore, E. G., & Pacey, M. A. (2004). Geographic dimensions of aging in Canada, 1991–2001. Canadian Journal on Aging/La Revue canadienne du vieillissement, 23(5), S5–S21.CrossRefGoogle Scholar
  19. Salvini, S., & De Rose, A. (Eds.). (2011). Rapporto sulla Popolazione. L’Italia a 150 anni dall’Unità. Bologna: Il Mulino.Google Scholar
  20. Schoeni, R. F., & Ofstedal, M. B. (2010). Key themes in research on the demography of aging. Demography, 47(1), S5–S15.CrossRefGoogle Scholar
  21. Shiode, N., Morita, M., Shiode, S., & Okunuki, K. I. (2014). Urban and rural geographies of aging: a local spatial correlation analysis of aging population measures. Urban Geography, 35(4), 608–628.CrossRefGoogle Scholar
  22. Thiede, B. C., & Monnat, S. M. (2016). The great recession and America’s geography of unemployment. Demographic Research, 35(30), 891–928.CrossRefGoogle Scholar
  23. United Nations. (2013). World population ageing 2013. New York: Department of Economic and Social Affairs.Google Scholar
  24. Walford, N. S., & Kurek, S. (2008). A comparative analysis of population ageing in urban and rural areas of England and Wales, and Poland over the last three census intervals. Population, Space and Place, 14(5), 365–386.CrossRefGoogle Scholar
  25. Xie, B., Zhou, J., & Luo, X. (2015). Mapping spatial variation of population aging in China’s mega cities. Journal of Maps, 12(1), 181–192.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Political SciencesRoma Tre UniversityRomeItaly

Personalised recommendations