Advertisement

Microstructural Changes and Quality Improvement of Al7Si0.2Mg (356) Alloy by Die Vibration

Abstract

The influence of amplitude and frequency of die vibration during solidification on microstructural evolution of Al–7Si–0.2Mg (356, LM-25) alloy was studied. The amplitude of die vibration was varied from 0.0 to 1.05 mm at 50 Hz frequency, and the frequency was changed from 30 to 50 Hz at a amplitude of 0.75 mm. Structural examination and quality of the casting were evaluated in terms of porosity at various processing conditions. Vibration modified and refined structure during gravity die casting of the alloy. Macrostructure of casting prepared in vibrating die consisted of fine equiaxed grains. In contrast, macrostructure of casting produced in stationary die typically consisted of columnar grains at the periphery and equiaxed grains at the center. Die vibration resulted in microstructure of mixed type comprising of globular and dendritic primary α-Al with interdendritic eutectic Si particles. On the contrary, microstructure of casting produced in stationary die consisted of dendritic α-Al structure and eutectic Si particles. In addition, die vibration reduced secondary dendritic arms spacing (SDAS) to 18.98 μm from 34.38 μm obtained without vibration. Since SDAS is a measure of cooling rate, its reduction due to die vibration implies an increase in cooling rate of casting. This is attributed to the forced convection effect generated by die vibration. Consequently, the higher cooling rate owing to the die vibration reduced microsegregation of Si and Mg in the casting. Further, structural modification and refinement due to die vibration improved the quality of casting significantly in terms of porosity.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

References

  1. 1.

    J.G. Kaufman, E.L. Rooy, Aluminum Alloy Castings: Properties, Processes, and Applications (ASM International, Materials Park, 2004)

  2. 2.

    W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P.D. Smet, A. Haszler, A.I. Vieregge, Mater. Sci. Eng. A 280, 37 (2000)

  3. 3.

    D.R. Gunasegaram, D.J. Farnsworth, T.T. Nguyen, J. Mater. Process. Technol. 209, 1209 (2009)

  4. 4.

    T. Triyono, N. Muhayat, A. Supriyanto, L. Lutiyatmi, Arch. Foundry Eng. 17, 227 (2017)

  5. 5.

    M. Mostafaei, M. Ghobadi, E.B. Ghasem, M. Uludag, M. Tiryakioglu, Metall. Mater. Trans. 47B, 3469 (2016)

  6. 6.

    M. Javidani, D. Larouche, Int. Mater. Rev. 59, 132 (2014)

  7. 7.

    M. Di Sabatino, L. Arnberg, Trans. Indian Inst. Metals 62, 321 (2009)

  8. 8.

    F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann, E.R. Pinatel, P.J. Uggowitzer, Mater. Sci. Eng. A 560, 481 (2013)

  9. 9.

    N. Roy, A. Samuel, F. Samuel, Metall. Trans. A 27, 415 (1996)

  10. 10.

    J.F. Major, AFS Trans. 105, 901 (1997)

  11. 11.

    S.B. Kim, Y.H. Cho, J.G. Jung, W.H. Yoon, Y.K. Lee, J.M. Lee, Metals Mater. Int. 24, 1376 (2018)

  12. 12.

    W. Khalifa, Y. Tsunekawa, M. Okumiya, Int. J. Cast Metals Res. 21, 129 (2008)

  13. 13.

    Y. Mizutani, S. Kawai, K. Miwa, K. Yasue, T. Tamura, Mater. Trans. 45, 1939 (2004)

  14. 14.

    J. Dong, J. Cui, X. Zeng, W. Ding, Mater. Lett. 59, 1502 (2005)

  15. 15.

    K. Girija, I. Satyanarayana, Int. J. Adv. Res. Manag. Archit. Technol. Eng. 1, 21 (2015)

  16. 16.

    S. Kumar, S.P. Tewari, Sadhana 41, 1203 (2016)

  17. 17.

    S. Kumar, S.P. Tewari, Inter Metalcast 12, 28 (2018). https://doi.org/10.1007/s40962-017-0135-x

  18. 18.

    P.N. Anyalebechi, Inter Foundry Res. 63, 32 (2011)

  19. 19.

    M.C. Mehta, D. Mandal, S.K. Chaudhury, Inter Metalcast 13, 438 (2019). https://doi.org/10.1007/s40962-018-0271-y

  20. 20.

    J. Campbell, Advances in the Science and Engineering of Casting Solidification (Springer, Cham, 2015), p. 357

  21. 21.

    J. Deshpande, M.M. Makhlouf, AFS Trans. 116, 1–18 (2008)

  22. 22.

    ASTM Standard E3-11, vol. 03.01 (ASTM International, West Conshohocken, PA, 2017)

  23. 23.

    T. Tamura, T. Matsuki, K. Miwa, Light Metals (2011), p. 827

  24. 24.

    Y. Yoshitake, K. Yamamoto, N. Sasaguri, H. Era, Inter Metalcast 13, 553 (2019). https://doi.org/10.1007/s40962-018-0289-1

  25. 25.

    C. Allen, Q. Han, Inter Metalcast 5, 69 (2011). https://doi.org/10.1007/BF03355511

  26. 26.

    L.Y. Pio, S. Sulaiman, A.M. Hamouda, M.M.H.M. Ahmad, J. Mater. Process. Technol. 162–163, 435 (2005)

  27. 27.

    A. Claro, J. Conrads, J. Fava, R.A. Flinn, AFS Trans. 78, 324 (1970)

  28. 28.

    M.A. Suarez, I. Figueroa, A. Cruz, A. Hernandez, J.F. Chavez, Mater. Res. 15, 763 (2012)

  29. 29.

    T. Timelli, E.D. Corte, F. Bonollo, Mater. Sci. Forum 678, 105 (2011)

  30. 30.

    A.B. Michael, M.B. Bever, J. Metals 6, 47 (1954)

  31. 31.

    L. Pedersen, L. Arnberg, Mater. Sci. Eng. A 241, 285 (1998)

  32. 32.

    A.R. Valizadeh, A.R. Kiani-Rashid, M.H. Avazkonandeh-Gharoval, E.Z. Karimi, Metallogr. Microstruct. Anal. 2, 107 (2013)

  33. 33.

    D.M. Levine, D.F. Stephan, T.C. Krehbiel, M.L. Berenson, Statistics for Managers Using Microsoft ®Excel (Prentice Hall, Upper Saddle River, 2008)

  34. 34.

    W. Chen, S. Wu, R. Wang, Inter Metalcast 13, 969 (2019). https://doi.org/10.1007/s40962-019-00319-y

Download references

Author information

Correspondence to Sujoy K. Chaudhury.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mehta, M.C., Mandal, D. & Chaudhury, S.K. Microstructural Changes and Quality Improvement of Al7Si0.2Mg (356) Alloy by Die Vibration. Inter Metalcast (2020). https://doi.org/10.1007/s40962-020-00408-3

Download citation

Keywords

  • Al–Si–Mg alloy
  • vibration
  • gravity die casting
  • microstructure
  • shrinkage porosity