Investigation of Electromagnetic and Mechanical Stirring Sequence Effects on Production of Magnesium Matrix Nanocomposite

  • A. H. Jabbari
  • M. SedighiEmail author


In this article, mechanical and electromagnetic stirring methods were employed in different sequences during the stir casting process in order to fabricate metal matrix nanocomposite. Sequence of stirring methods can affect particle distribution and porosity of the composite and consequently alter microstructural and mechanical properties. To investigate the stirring effects, AZ31B/1.5 vol% nano-Al2O3 composites were produced using different stirring processes. Next, the as-cast billets were hot-extruded at 350 °C using 20:1 extrusion ratio. The results showed that the sequence of the mechanical and electromagnetic stirring methods have considerable effects on porosity, grain size, microhardness, tensile properties, and high cycle fatigue behavior of the composites. The best mechanical and microstructural properties were obtained by the mechanical stirring method followed by the electromagnetic stirring. The samples produced by this method exhibited 44.7% decrease in grain size, 40.8% increase in hardness, 12.3% enhancement in ultimate tensile strength, and 16.5% improvement in maximum elongation, compared to the monolithic AZ31B sample. Additionally, the endurance limit of the composite enhanced about 21% in high cycle fatigue regime. On the other hand, nanocomposite fabricated by mechanical stirring method showed the poorest behavior under cyclic loading.


magnesium metal matrix composite stir casting mechanical stirring electromagnetic stirring high cycle fatigue 



The authors would like to thank Mr. Arash Shafiee Sabet for his kind help during the experiments.


  1. 1.
    Q. Chen, G. Chen, L. Han et al., J. Alloys Compd. 656, 67 (2016)CrossRefGoogle Scholar
  2. 2.
    M. Habibnejad-Korayem, R. Mahmudi, W. Poole, Mater. Sci. Eng. A 519, 198 (2009)CrossRefGoogle Scholar
  3. 3.
    S. Song, X. Zhou, L. Li et al., Ultrason. Sonochem. 24, 43 (2015)CrossRefGoogle Scholar
  4. 4.
    A. Azad, L. Bichler, A. Elsayed, Inter Metalcast 7, 49 (2013)CrossRefGoogle Scholar
  5. 5.
    X. Zhang, L. Liao, N. Ma et al., Compos. A 37, 2011 (2006)CrossRefGoogle Scholar
  6. 6.
    D. Ren, K. Zhao, M. Pan et al., Scripta Mater. 126, 58 (2017)CrossRefGoogle Scholar
  7. 7.
    J.E. Sun, M. Chen, G. Cao et al., J. Compos. Mater. 48, 825 (2014)CrossRefGoogle Scholar
  8. 8.
    Q. Nguyen, M. Gupta, J. Alloys Compd. 459, 244 (2008)CrossRefGoogle Scholar
  9. 9.
    C. Jun, Z. Qing, L. Quanan, Inter Metalcast 12, 897 (2018)CrossRefGoogle Scholar
  10. 10.
    Y. Radi, R. Mahmudi, Mater. Sci. Eng. A 527, 2764 (2010)CrossRefGoogle Scholar
  11. 11.
    T. Zhong, K. Rao, Y. Prasad et al., Mater. Sci. Eng. A 589, 41 (2014)CrossRefGoogle Scholar
  12. 12.
    K. Nie, K. Deng, F. Xu et al., Mater. Chem. Phys. 149, 21 (2015)CrossRefGoogle Scholar
  13. 13.
    W.J. Joost, P.E. Krajewski, Scripta Mater. 128, 107 (2017)CrossRefGoogle Scholar
  14. 14.
    X. Wang, K. Wu, W. Huang et al., Compos. Sci. Technol. 67, 2253 (2007)CrossRefGoogle Scholar
  15. 15.
    M.-J. Shen, T. Ying, F.-Y. Chen et al., Inter Metalcast 11, 287 (2017)CrossRefGoogle Scholar
  16. 16.
    M. Paramsothy, X. Tan, J. Chan et al., J. Alloys Compd. 545, 12 (2012)CrossRefGoogle Scholar
  17. 17.
    H.Z. Ye, X.Y. Liu, J. Mater. Sci. 39, 6153 (2004)CrossRefGoogle Scholar
  18. 18.
    U. Aybarc, H. Yavuz, D. Dispinar et al., Inter Metalcast 13, 190 (2019)CrossRefGoogle Scholar
  19. 19.
    I. Ibrahim, F. Mohamed, E. Lavernia, J. Mater. Sci. 26, 1137 (1991)CrossRefGoogle Scholar
  20. 20.
    H. Kumar, G. Chaudhari, Mater. Sci. Eng. A 607, 435 (2014)CrossRefGoogle Scholar
  21. 21.
    K. Deng, K. Wu, X. Wang et al., Mater. Sci. Eng. A 527, 1630 (2010)CrossRefGoogle Scholar
  22. 22.
    S.P. Dwivedi, S. Sharma, R.K. Mishra, Inter. J. Adv. Res. Innov. 2, 639 (2014)Google Scholar
  23. 23.
    A. Kumar, S. Lal, S.J. Kumar, Mater. Res. Technol. 2, 250 (2013)CrossRefGoogle Scholar
  24. 24.
    C. Potzies, K.U. Kainer, Adv. Eng. Mater. 6, 281 (2004)CrossRefGoogle Scholar
  25. 25.
    J. Hashim, L. Looney, M. Hashmi, J. Mater. Process. Technol. 92, 1 (1999)CrossRefGoogle Scholar
  26. 26.
    J. Garcia-Hinojosa, M. Surrapa, Mater. Sci. Eng. A 386, 54 (2004)CrossRefGoogle Scholar
  27. 27.
    A.R. Vaidya, J.J. Lewandowski, Mater. Sci. Eng. A 220, 85 (1996)CrossRefGoogle Scholar
  28. 28.
    C. Goh, M. Gupta, J. Wei et al., J. Compos. Mater. 42, 2039 (2008)CrossRefGoogle Scholar
  29. 29.
    C. Goh, J. Wei, L. Lee et al., Compos. Sci. Technol. 68, 1432 (2008)CrossRefGoogle Scholar
  30. 30.
    T. Srivatsan, C. Godbole, T. Quick et al., J. Mater. Eng. Perform. 22, 439 (2013)CrossRefGoogle Scholar
  31. 31.
    H.A. Hassan, J.J. Lewandowski, Mater. Sci. Eng. A 600, 188 (2014)CrossRefGoogle Scholar
  32. 32.
    X. Liu, S. Jia, L. Nastac, Inter Metalcast 8, 51 (2014)CrossRefGoogle Scholar
  33. 33.
    N. Chawla, K.K. Chawla, Metal Matrix Composites, 2nd edn. (Springer, New York, 2013)CrossRefGoogle Scholar
  34. 34.
    T. Clyne, P. Withers, An Introduction to Metal Matrix Composites (Cambridge University Press, Cambridge, 1995)Google Scholar
  35. 35.
    A. Sabet, A. Jabbari, M. Sedighi, J. Compos. Mater. 52, 1711 (2018)CrossRefGoogle Scholar
  36. 36.
    A.K. Khanra, H.C. Jung, S.H. Yu et al., Bull. Mater. Sci. 33, 43 (2010)CrossRefGoogle Scholar
  37. 37.
    Q. Chen, G. Chen, F. Han et al., Metall. Mater. Trans. A 48, 3497 (2017)CrossRefGoogle Scholar
  38. 38.
    A. Singh, N. Bala, Metall. Mater. Trans. A 48, 5031 (2017)CrossRefGoogle Scholar
  39. 39.
    S. Hassan, M. Gupta, Mater. Sci. Eng. A 425, 22 (2006)CrossRefGoogle Scholar
  40. 40.
    M. Shen, M. Zhang, W. Ying, J. Magn. Alloys 3, 162 (2015)CrossRefGoogle Scholar
  41. 41.
    S. Mohammadi, A. Jabbari, M. Sedighi, J. Mater. Eng. Perform. 26, 3410 (2017)CrossRefGoogle Scholar
  42. 42.
    E. Suneesh, M. Sivapragash, Mater. Manuf. Process. 33, 1324 (2018)CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringIran University of Science and TechnologyNarmak, TehranIran

Personalised recommendations