Influence of TiN Additions on the Microstructure of a Lightweight Fe–Mn–Al Steel

  • Rairu Vaz Penna
  • Laura N. BartlettEmail author
  • Ron O’Malley


The potential of different inclusions to act as heterogeneous nucleation sites for primary austenite during solidification of a lightweight Fe–30Mn–5.5Al–1.5C–1.2Si steel was analyzed by thermodynamic calculations and experimental heats. Thermodynamic simulations and lattice disregistry calculations were utilized to predict the stability and nucleation potential of different inclusions. TiN was considered as the grain-refining addition because of the success of this inoculant in other austenitic steel castings. Addition of TiN was performed through the use of a pre-made master alloy containing a large volume fraction of fine TiN inclusions. Experimental castings were produced from cylindrical phenolic resin-bonded sand molds with a bottom chill to introduce directional solidification. Additions of 0.5 and 1.5% of the TiN containing master alloy, up to 0.29 wt% Ti addition to the melt, did not yield detectable grain refinement of the as-cast grain structure when compared to the steel castings without additions. Scanning electron microscopy revealed that the inclusions present in the resulting castings consisted mainly of Ti(C,N) with up to a 0.4% area fraction, and this suggests that the original TiN inclusions were at least partially dissolved. Thermodynamic modeling predicted the equilibrium stability of Ti4C2S2 at temperatures above 1440 °C. Although this phase was not observed experimentally, a nanoscale interface layer of Ti4C2S2 or sulfur adsorption on the surface of the Ti(C,N) inclusions may be responsible for poisoning of the nuclei.


high manganese steels grain refinement nonmetallic inclusions titanium nitride 



This work was supported in part by a grant from by DLA—Troop Support, Philadelphia, PA, and the Defense Logistics Agency Logistics Operations, J68, Research & Development, Ft. Belvoir, VA. The authors also gratefully acknowledge Dr. Simon Lekakh for helpful discussion and all graduate students from MS&E Department at Missouri University of Science and Technology for assistance in conducting experiments.


  1. 1.
    L. Bartlett, D. Van Aken, JOM 66(9), 1770–1784 (2014)CrossRefGoogle Scholar
  2. 2.
    H. Kim, D. Suh, N. Kim, Sci. Technol. Adv. Mater. 14(1), 1–11 (2013)CrossRefGoogle Scholar
  3. 3.
    S. Lekakh, J. Ge, V. Richards, R. O’Malley, J. TerBush, Metall. Mater. Trans. B 48(1), 406–419 (2016)CrossRefGoogle Scholar
  4. 4.
    J. Morris, The influence of grain size on the mechanical properties of steel U.S. Department of Energy. Office of Scientific and Technical Information, N. p. (2001).
  5. 5.
    D. Arvola, Grain refinement of high alloy stainless steels in dand and directionally solidified castings. M.S. thesis, Missouri University of Science and Technology, Rolla (2018)Google Scholar
  6. 6.
    Ø. Grong, L. Kolbeinsen, C. Van der Eijk, G. Tranell, ISIJ Int. 46(6), 824–831 (2006)CrossRefGoogle Scholar
  7. 7.
    F. Haakonsen, J.K. Solberg, O.S. Klevan, C. Van der Eijk, in AISTech Proceedings, Indianapolis, IN, 2–5 May 2011Google Scholar
  8. 8.
    L. Bartlett, B.R. Avila, Int. J. Metalcast. 10(4), 401–420 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Anderson, J. Janis, L. Holappa, M. Kivio, P. Naveau, M. Brandt, L. Bellavia, E. De Courcy, L. Chapuis, T. Lung, S. Ekerot, C. Van der Eijk, X. Vanden Eynde, Grain size control in steel by means of dispersed non-metallic inclusions. Report number ECSC steel RTD project KI-NA-24993-EN-N (2010).
  10. 10.
    M. Li, L. Jian-Min, Z. Quing, Q. Dong, W. Geoff, Z. Ming-Xing, Metall. Mater. Trans. B 48(6), 2902–2912 (2017)CrossRefGoogle Scholar
  11. 11.
    M. Mizumoto, S. Sasaki, T. Ohgai, A. Kagawa, Int. J. Cast Met. Res. 21(1–4), 49–55 (2008)CrossRefGoogle Scholar
  12. 12.
    J.W. Kucharczyk, K.R. Funk, B. Kos, U.S. Patent No. US 6,572,713 B2 (Washington, DC, U.S. Patent and Trademark Office, 2003)Google Scholar
  13. 13.
    D. Siafakas, On particles and slags in steel casting. Doctoral thesis, Jonkoping University, Sweden (2019)Google Scholar
  14. 14.
    W.C. Leslie, The Physical Metallurgy of Steels (Hemisphere Publishing, London, 1981)Google Scholar
  15. 15.
    E.S. Dahle, M.S. thesis, Norwegian University of Science and Technology, Trondheim (2011)Google Scholar
  16. 16.
    J. Yang, F. Hao, D. Li, Y. Zhou, X. Ren, Y. Yang, Q. Yang, J. Rare Earths 30(8), 814–819 (2012)CrossRefGoogle Scholar
  17. 17.
    B.L. Bramfitt, Metall. Trans. 1(7), 1987–1995 (1970)CrossRefGoogle Scholar
  18. 18.
    C. Van der Eijk, F. Haakosen, O.S. Klevan, O. Grong, in AISTech Conference Proceedings, Indianapolis, IN, ISBN 978-1-935117-19-3, 559-556 (2011)Google Scholar
  19. 19.
    E.S. Dahle, Ph.D. thesis, Norwegian University of Science and Technology, Trondheim, Norway (2011)Google Scholar
  20. 20.
    J.L. Gao, P. Fu, H. Liu, D. Li, Metals 5(1), 383–394 (2015)CrossRefGoogle Scholar
  21. 21.
    R. Tuttle, Int. J. Metalcast. 4(3), 17–25 (2010)CrossRefGoogle Scholar
  22. 22.
    ThermoCalc V7.0 Software, TCFE9 Steels/Fe-Alloys V9.0, 9-13-18Google Scholar
  23. 23.
    S. Chen, R. Rana, A. Haldar, R.K. Ray, Prog. Mater. Sci. 89, 345–391 (2017)CrossRefGoogle Scholar
  24. 24.
    R. Howell, S.L. Lekakh, D.C. Van Aken, V.L. Richards, AFS Trans. 46, 3309–3316 (2008)Google Scholar
  25. 25.
    I. Kalashnikov, O. Acselrad, A. Shalkevich, L.C. Pereira, J. Mater. Eng. Perform. 9(6), 597–602 (2000)CrossRefGoogle Scholar
  26. 26.
    F.C. Nascimento, C.E. Foerster, S.L. Silva, C.M. Lepienski, C.J. Siqueira, C., Alves Junior (2009). CrossRefGoogle Scholar
  27. 27.
    M. Onink, C. Brakman, F. Tichelaar, E. Mittemeijer, N. Konyer, Scr. Metall. Mater. 29(8), 1011–1016 (1993)CrossRefGoogle Scholar
  28. 28.
    C.M. Chu, H. Huang, P. Kao, D. Gan, Scr. Metall. Mater. 30(4), 505–508 (1994)CrossRefGoogle Scholar
  29. 29.
    Z. Ławrynowicz, Adv. Mater. Sci. 13(2), 36 (2013). CrossRefGoogle Scholar
  30. 30.
    M. Sasaki, K. Matsuura, K. Ohsasa, M. Ohno, ISIJ Int. 49(9), 1362–1366 (2009)CrossRefGoogle Scholar
  31. 31.
    D. Arvola, S. Lekakh, R. O’Malley, L. Bartlett, Int. J. Metalcast. 13(3), 504–518 (2018)CrossRefGoogle Scholar
  32. 32.
    D.M. Stefanescu, Science and Engineering of Casting Solidification, 3rd edn. (Springer, Berlin, 2016)Google Scholar
  33. 33.
    D. Qiu, M. Zhang, J. Alloys Compd. 488(1), 260–264 (2009). CrossRefGoogle Scholar
  34. 34.
    S.N. Lekakh, N.I. Medvedeva, Comput. Mater. Sci. 106, 149–154 (2015)CrossRefGoogle Scholar
  35. 35.
    T.E. Quested, Mater. Sci. Technol. 20(11), 1357–1369 (2004). CrossRefGoogle Scholar
  36. 36.
    P. Schumacher, A. Greer, Mater. Sci. Eng. A 181, 1335–1339 (1994). CrossRefGoogle Scholar
  37. 37.
    P. Schumacher, A. Greer, Mater. Sci. Eng. A 178, 309–313 (1994). CrossRefGoogle Scholar
  38. 38.
    N. Shimahashi, I. Muto, Y. Sugawara, N. Hara, J. Electrochem. Soc. 160, 262–269 (2013)CrossRefGoogle Scholar
  39. 39.
    X. Mao, Titanium Microalloyed Steel: Fundamentals, Technology, and Products (Metallurgical Industry Press, Heidelberg, 2019). CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2019

Authors and Affiliations

  1. 1.Materials Science and Engineering DepartmentMissouri University of Science and TechnologyRollaUSA

Personalised recommendations