Advertisement

Solidification Rate and the Partial Modification of 319 Aluminum Alloy with Strontium

  • Eli VandersluisEmail author
  • Nicholas Prabaharan
  • Comondore Ravindran
Article
  • 22 Downloads

Abstract

Trace strontium (Sr) additions to Al–Si alloys can transform coarse, acicular eutectic Si particles into a fine, fibrous morphology. Much research has focused on the production of well-modified structures, given their superior material properties. However, the partial modification of Al–Si alloys has received minimal attention, with little data available on the role of solidification rate. In this study, the partial modification of industrial 319 Al alloy was investigated by producing castings with Sr contents up to 300 ppm and total solidification rates between 0.14 and 5.89 °C s−1. Eutectic Si growth temperatures (\( T_{\text{G}} \)) and median particle morphologies were characterized using thermal analysis and quantitative image analysis. This revealed synergistic modification effects between Sr and solidification rate on either feature. At intermediate Sr contents, a gradual Si transformation occurred only at slow solidification rates. Yet, at 3.03 °C s−1 and higher, the transformation was drastic with no appreciable partial modification range. Furthermore, an unusual distribution of fine Al2Cu particles was observed in the eutectic regions of the Sr-containing alloys. Their presence was also influenced by the combination of Sr and solidification rate. The knowledge and alloy-specific \( T_{\text{G}} \) and modification data presented will enable effective alloy processing and property control of 319 Al components.

Keywords

aluminum alloys modification thermal analysis electron microscopy quantitative image analysis 

Notes

Acknowledgements

The authors are thankful to the Natural Sciences and Engineering Research Council of Canada (NSERC) for the award of the Canada Graduate Scholarship to Eli Vandersluis and for financial support of this project. The authors are grateful to Alan Machin, Payam Emadi, Bernoulli Andilab, Michael Rinaldi, Thomas Poltoranos, and the members of the Centre for Near-net-shape Processing of Materials (CNPM) at Ryerson University for experimental assistance and support.

Funding

Funding was provided by Natural Sciences and Engineering Research Council of Canada (Grant No. CGSD3-489708-2016).

References

  1. 1.
    N. Fatahalla, M. Hafiz, M. Abdulkhalek, J. Mater. Sci. 34, 3555 (1999)CrossRefGoogle Scholar
  2. 2.
    M. Mulazimoglu, R. Drew, J. Gruzleski, Metall. Trans. A 20, 383 (1989)CrossRefGoogle Scholar
  3. 3.
    G. Sigworth, AFS Trans. 116, 115 (2008)Google Scholar
  4. 4.
    F. Zu, X. Li, China Foundry 11, 287 (2014)Google Scholar
  5. 5.
    G. Sigworth, Mod. Cast. 77, 23 (1987)Google Scholar
  6. 6.
    L. Clapham, R. Smith, J. Cryst. Growth 79, 866 (1986)CrossRefGoogle Scholar
  7. 7.
    W. Callister, Materials Science and Engineering: An Introduction, 8th edn. (Wiley, Hoboken, 2010)Google Scholar
  8. 8.
    T. Hosch, L. England, R. Napolitano, J. Mater. Sci. 44, 4892 (2009)CrossRefGoogle Scholar
  9. 9.
    K. Nogita, A. Dahle, Mater. Trans. 42, 393 (2001)CrossRefGoogle Scholar
  10. 10.
    M. Djurdjevic, H. Jiang, J. Sokolowski, Mater. Charact. 46, 31 (2001)CrossRefGoogle Scholar
  11. 11.
    S. Shabestari, S. Ghodrat, Mater. Sci. Eng. A 467, 150 (2007)CrossRefGoogle Scholar
  12. 12.
    M. Zamani, S. Seifeddine, Int. J. Metalcast. 10, 457 (2016)CrossRefGoogle Scholar
  13. 13.
    N. Tenekedjiev, J. Gruzleski, AFS Trans. 99, 1 (1999)Google Scholar
  14. 14.
    E. Vandersluis, D. Sediako, C. Ravindran, A. Elsayed, G. Byczynski, J. Alloys Compd. 736, 172 (2018)CrossRefGoogle Scholar
  15. 15.
    S. Hegde, K. Narayan Prabhu, J. Mater. Sci. 43, 3009 (2008)CrossRefGoogle Scholar
  16. 16.
    S. Shankar, Y. Riddle, M. Makhlouf, Acta Mater. 52, 4447 (2004)CrossRefGoogle Scholar
  17. 17.
    P. Crosley, L. Mondolfo, Mod. Cast. 49, 99 (1966)Google Scholar
  18. 18.
    S. McDonald, K. Nogita, A. Dahle, Acta Mater. 52, 4273 (2004)CrossRefGoogle Scholar
  19. 19.
    L. Mondolfo, Structure and Properties of Aluminum Alloys (Metallurgiya, Moscow, 1979)Google Scholar
  20. 20.
    M. Djurdjevic, T. Stockwell, J. Sokolowski, Int. J. Cast Met. Res. 12, 67 (1999)CrossRefGoogle Scholar
  21. 21.
    N. Tenekedjiev, H. Mulazimoglu, B. Closset, J. Gruzleski, in Microstructures and Thermal Analysis of Strontium-Treated Aluminum–Silicon Alloys, ed. by S. Thomas (American Foundrymen’s Society Inc., Des Plaines, 1995)Google Scholar
  22. 22.
    E. Vandersluis, C. Ravindran, Trans. Indian Inst. Met. 71, 1231 (2018)CrossRefGoogle Scholar
  23. 23.
    M. Djurdjevic, W. Kierkus, G. Byczynski, T. Stockwell, J. Sokolowski, AFS Trans. 107, 173 (1999)Google Scholar
  24. 24.
    E. Vandersluis, C. Ravindran, J. Mater. Eng. Perform. 27, 1109 (2018)CrossRefGoogle Scholar
  25. 25.
    E. Vandersluis, A. Lombardi, C. Ravindran, A. Bois-Brochu, F. Chiesa, R. MacKay, Mater. Sci. Eng. A 648, 401 (2015)CrossRefGoogle Scholar
  26. 26.
    Z. Li, M. Samuel, F. Samuel, C. Ravindran, S. Valtierra, J. Mater. Sci. 38, 1203 (2003)CrossRefGoogle Scholar
  27. 27.
    H. Choi, X. Li, J. Mater. Sci. 47, 3096 (2012)CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2019

Authors and Affiliations

  1. 1.Centre for Near-net-shape Processing of MaterialsRyerson UniversityTorontoCanada

Personalised recommendations