Advertisement

Development and Characterization of In Situ AlSi5Cu3/TiB2 Composites

  • V. S. Ayar
  • M. P. SutariaEmail author
Article
  • 20 Downloads

Abstract

The present investigation focuses on improvement in mechanical properties of AlSi5Cu3 aluminum alloy by in situ synthesis of TiB2 reinforcement particles. Stochiometrically calculated amount of potassium tetrafluoro borate and potassium hexafluoro titanate were used for the development of 3 and 6 wt% particles of TiB2 in the liquid metal. The melt having TiB2 particles was allowed to solidify naturally in the sand mold. X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed the formation of hexagonal TiB2 particles within the matrix. Microstructural studies concluded the formation of micron size TiB2 particles and reduction in grain size. Ultimate tensile strength increased from 21 to 64% and hardness increased from 30 to 50% compared to AlSi5Cu3 alloy due to the formation of 3% and 6% TiB2 particles, respectively.

Keywords

aluminum composite grain halide in situ metal 

Notes

Acknowledgement

The authors gratefully acknowledge the support from Department of Science and Technology (DST), New Delhi, sponsored SMART Foundry Project (DST/TSG/AMT/2015/332 dated 17/08/2016).

References

  1. 1.
    North American Light Vehicle Aluminum Content Study. (Ducker Worldwide Study, 2016), http://www.ducker.com/news-insights/ducker-worldwide-studyaluminum-content-cars-public-summary. Accessed 31 Aug 2017
  2. 2.
    A.S.M. Handbook, Properties and selection: nonferrous alloys and special-purpose materials. ASM Int. 2, 597–599 (1990)Google Scholar
  3. 3.
    J.H. Sokolowski, M.B. Djurdjevic, C.A. Kierkus et al., J. Mater. Process. Technol. 109, 174 (2001).  https://doi.org/10.1016/S0924-0136(00)00793-7 CrossRefGoogle Scholar
  4. 4.
    R. Mahmudi, P. Sepehrband, H.M. Ghasemi, Mater. Lett. 60, 2606 (2006).  https://doi.org/10.1016/j.matlet.2006.01.046 CrossRefGoogle Scholar
  5. 5.
    S. Poria, P. Sahoo, G. Sutradhar, Silicon 8, 591 (2016).  https://doi.org/10.1007/s12633-016-9437-5 CrossRefGoogle Scholar
  6. 6.
    S. Poria, G. Sutradhar, P. Sahoo, Mater. Res. Express 5, 056509 (2018).  https://doi.org/10.1088/2053-1591/aac0df CrossRefGoogle Scholar
  7. 7.
    Y. Pazhouhanfar, B. Eghbali, Mater. Sci. Eng. A 172, 180 (2018).  https://doi.org/10.1016/j.msea.2017.10.087 Google Scholar
  8. 8.
    S.C. Tjong, Z.Y. Ma, Mater. Sci. Eng. R 29, 49 (2000).  https://doi.org/10.1016/S0927-796X(00)00024-3 CrossRefGoogle Scholar
  9. 9.
    S.M.Y. Kaku, A.K. Khanra, M.J. Davidson, J Alloys Compd 666, 675 (2018).  https://doi.org/10.1016/j.jallcom.2018.03.088 Google Scholar
  10. 10.
    R. Gecu, A. Karaaslan, Inter. Metalcast. 1, 9 (2018).  https://doi.org/10.1007/s40962-018-0253-0 Google Scholar
  11. 11.
    S. Soltani, R.A. Khosroshahi, R.T. Mousavian et al., Rare Met. 36, 581 (2017).  https://doi.org/10.1007/s12598-015-0565-7 CrossRefGoogle Scholar
  12. 12.
    S. Agrawal, A.K. Ghose, I. Chakrabarty, Mater. Des. 113, 195 (2017)CrossRefGoogle Scholar
  13. 13.
    J.M. Mistry, P.P. Gohil, Compos Part B Eng 190, 204 (2019).  https://doi.org/10.1016/j.compositesb.2018.10.074 Google Scholar
  14. 14.
    R. Mohammadi Badizi, M. Askari-Paykani, A. Parizad et al., Inter. Metalcast. 12, 565 (2018)CrossRefGoogle Scholar
  15. 15.
    A.R. Kennedy, A.E. Karantzalis, S.M. Wyatt, J. Mater. Sci. 34, 933 (1999).  https://doi.org/10.1023/A:1004519306186 CrossRefGoogle Scholar
  16. 16.
    M.K. Akbari, H.R. Baharvandi, K. Shirvanimoghaddam, Mater. Des. 66, 150 (2015).  https://doi.org/10.1016/j.matdes.2014.10.048 CrossRefGoogle Scholar
  17. 17.
    A.M. Samuel, H.W. Doty, S. Valtierra et al., Inter. Metalcast. 11, 305 (2017).  https://doi.org/10.1007/s40962-016-0075-x CrossRefGoogle Scholar
  18. 18.
    B. Yang, Y.Q. Wang, B.L. Zhou, Metall. Mater. Trans. B 29, 635 (1998).  https://doi.org/10.1007/s11663-998-0098-7 CrossRefGoogle Scholar
  19. 19.
    M. Emamy, M. Mahta, J. Rasizadeh, Compos. Sci. Technol. 66, 1063 (2006).  https://doi.org/10.1016/j.compscitech.2005.04.016 CrossRefGoogle Scholar
  20. 20.
    B.S. Murty, S.A. Kori, M. Chakraborty, Int. Mater. Rev. 47, 3 (2002).  https://doi.org/10.1179/095066001225001049 CrossRefGoogle Scholar
  21. 21.
    Y. Han, X. Liu, X. Bian, Compos. A 33, 439 (2002).  https://doi.org/10.1016/S1359-835X(01)00124-5 CrossRefGoogle Scholar
  22. 22.
    J. Liu, Z. Liu, Z. Dong et al., J. Alloys Compd. 1008, 1017 (2018).  https://doi.org/10.1016/j.jallcom.2018.06.303 Google Scholar
  23. 23.
    A. Changizi, A. Kalkanli, N. Sevinc, J. Alloys Compd. 509, 237 (2011).  https://doi.org/10.1016/j.jallcom.2010.08.089 CrossRefGoogle Scholar
  24. 24.
    P. Davies, J.L.F. Kellie, D.P. Patron, J.V. Wood, Metal Matrix Alloys. U.S. Patent 6,228,185, 2001Google Scholar
  25. 25.
    S. Kumar, V.S. Sarma, B.S. Murty, Mater. Sci. Eng. A 476, 333 (2008).  https://doi.org/10.1016/j.msea.2007.04.113 CrossRefGoogle Scholar
  26. 26.
    L. Lü, M.O. Lai, Y. Su et al., Scripta Mater. 45, 1017 (2001).  https://doi.org/10.1016/S1359-6462(01)01128-9 CrossRefGoogle Scholar
  27. 27.
    A.M. Davidson, D. Regener, Compos. Sci. Technol. 60, 865 (2000).  https://doi.org/10.1016/S0266-3538(99)00151-7 CrossRefGoogle Scholar
  28. 28.
    S. Natarajan, R. Narayanasamy, S.K. Babu et al., Mater. Des. 30, 2521 (2009).  https://doi.org/10.1016/j.matdes.2008.09.037 CrossRefGoogle Scholar
  29. 29.
    H.M. Rajan, S. Ramabalan, I. Dinaharan et al., Arch. Civil Mech. Eng. 14, 72 (2014).  https://doi.org/10.1016/j.acme.2013.05.005 CrossRefGoogle Scholar
  30. 30.
    S. Kumar, M. Chakraborty, V.S. Sarma et al., Wear 265, 134 (2008).  https://doi.org/10.1016/j.wear.2007.09.007 CrossRefGoogle Scholar
  31. 31.
    C.S. Ramesh, S. Pramod, R. Keshavamurthy, Mater. Sci. Eng. A 528, 4125 (2011).  https://doi.org/10.1016/j.msea.2011.02.024 CrossRefGoogle Scholar
  32. 32.
    Z. Zhang, D.L. Chen, Mater. Sci. Eng. A 483, 148 (2008).  https://doi.org/10.1016/j.msea.2006.10.184 CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Chandubhai S. Patel Institute of TechnologyCharotar University of Science and Technology (CHARUSAT)Changa, AnandIndia

Personalised recommendations