Skip to main content
Log in

Microstructural Characteristics, Mechanical Properties, Fracture Analysis and Corrosion Behavior of Hypereutectic Al–13.5Si Alloy

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Hypereutectic Al–13.5Si alloy containing 1.47% of copper and 1.30% of magnesium was designed as a potential material for internal combustion engine pistons. The optical microscopy and scanning electron microscopy (SEM) revealed the fine dendrites of α-Al phase and significantly dispersed eutectics in as-cast specimens. Several intermetallic phases were observed indicating different crystallization velocities and alloy composition nonuniformities. The tensile testing and hardness measurements performed at room temperature have shown an excellent tensile strength and hardness of as-cast specimens, but low elongation due to a complex multiphase structure. The mechanical examinations at 250 °C and 300 °C have presented a decrease in tensile strength and an increase in elongation, while hardness was slightly changed. The fractographic analysis has shown the features of the brittle as well as ductile fracture. The areas of dimples and areas containing particles with smooth surfaces were detected. Electrochemical methods, Tafel linear polarization, cyclic voltammetry, chronoamperometric measurement and impedance spectroscopy were employed to determine the corrosion behavior of as-cast specimens in 0.5 M NaCl solution. The resistant oxide layer formed on the surface was not entirely consistent due to the appearance of intermetallic phases. SEM examinations of corroded samples did not discover severe pits on their surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. A.W. Orlowicz, M. Tupaj, M. Mróz, A. Trytek, Combustion engine cylinder liners made of Al–Si alloys. Arch. Foundry Eng. 15(2), 71–74 (2015)

    Article  Google Scholar 

  2. R. Wieszala, J. Piątkowski, Selected tribological properties of A390.0 alloy. Arch. Foundry Eng. 17(4), 175–178 (2017)

    Article  Google Scholar 

  3. M. Javidani, D. Larouche, Application of cast Al–Si alloys in internal combustion engine components. Int. Mater. Rev. 59(3), 132–158 (2014)

    Article  Google Scholar 

  4. G.K. Sigworth, Int. Metalcast 2, 19 (2008). https://doi.org/10.1007/BF03355425

    Article  Google Scholar 

  5. C.G. Shivaprasad, K. Aithal, S. Narendranath, V. Desai, P.G. Mukunda, Effect of combined grain refinement and modification on microstructure and mechanical properties of hypoeutectic, eutectic and hypereutectic Al–Si alloys. Int. J. Microstruct. Mater. Prop. 10(3/4), 274–284 (2015)

    Google Scholar 

  6. J. Jorstad, D. Apelian, Int. Metalcast 3, 13 (2009). https://doi.org/10.1007/BF03355450

    Article  Google Scholar 

  7. A. Ahmed, M.S. Wahab, A.A. Raus, K. Kamarudin, Q. Bakhsh, D. Ali, Mechanical properties, material and design of the automobile piston: an ample review. Indian J. Sci. Technol. 9(36), 1–7 (2016)

    Google Scholar 

  8. J.O. Lima, C.R. Barbosa, I.A.B. Magno, J.M. Nascimento, A.S. Barros, M.C. Oliveira, F.A. Souza, O.L. Rocha, Microstructural evolution during unsteady-state horizontal solidification of Al–Si–Mg (356) alloy. Trans. Nonferrous Met. Soc. China 28(6), 1073–1083 (2018)

    Article  Google Scholar 

  9. J.R. Davis, Alloying: Understanding the Basics, 1st edn. (Materials Park, ASM International, 2001), p. 392

    Google Scholar 

  10. F.C. Robles-Hernandez, J.M.H. Ramírez, R. Mackay, Al–Si Alloys: Automotive, Aeronautical, and Aerospace Applications (Springer, Switzerland, 2017), p. 187

    Book  Google Scholar 

  11. J. Campbell, M. Tiryakioglu, Review of effect of P and Sr on modification and porosity development in Al–Si alloys. Mater. Sci. Technol. 26(3), 262–268 (2010)

    Article  Google Scholar 

  12. M. Jolly, in Comprehensive Structural Integrity, ed. by J. Milne, R. Ritchie, B.L. Karihaloo (Elsevier, Amsterdam), p. 423

  13. G. Sigworth, J. Campbell, J. Jorstad, Int. Metalcast 3, 65 (2009). https://doi.org/10.1007/BF03355442

    Article  Google Scholar 

  14. B.D. Baliga, K.N. Mohandas, T.A. Kumar, Study of machinability and corrosion behaviour of Al–Si–Mg alloy treated with master alloys. Int. J. Eng. Sci. Inn. Technol. 4(3), 310–316 (2015)

    Google Scholar 

  15. M. Rejaeian, M. Karamouz, M. Emamy, M. Hajizamani, Effects of Be additions on microstructure, hardness and tensile properties of A380 aluminum alloys. Trans. Nonferrous Met. Soc. China 25(11), 3539–3545 (2015)

    Article  Google Scholar 

  16. S. Vadim, Zolotorevsky, A. Nikolay, Belov, Michael, Glazoff, in Casting Aluminum Alloys, 1st edn. (Elsevier, Oxford, 2007), p. 329, 332, 335, 369, 496

  17. M. Karamouz, M. Azarbarmas, M. Emamy, M. Alipour, Microstructure, hardness and tensile properties of A380 aluminum alloy with and without Li additions. Mater. Sci. Eng. A 582, 409–414 (2013)

    Article  Google Scholar 

  18. R. Joseph, Davis, in Corrosion of Aluminum and Aluminum Alloys. (ASM International, Materials Park, 1999), pp. 38–42, 44

  19. T.L. Su, S.S. Wang, L.C. Tsao, S.Y. Chang, T.H. Chuang, M.S. Yeh, Corrosion behaviors of Al–Si–Cu-based filler metals and 6061-T6 brazements. J. Mater. Eng. Perform. 11(2), 187–193 (2002)

    Article  Google Scholar 

  20. W.R. Osorio, P.R. Goulart, A. Garcia, Effect of silicon content on microstructure and electrochemical behaviour of hypoeutectic Al–Si alloys. Mater. Lett. 62(3), 365–369 (2008)

    Article  Google Scholar 

  21. Y. Wu, H. Liao, Corrosion behavior of extruded near eutectic Al–Si–Mg and 6063 alloys. J. Mater. Sci. Technol. 29(4), 380–386 (2013)

    Article  Google Scholar 

  22. P. Chen, L. Liang, G. Luo, J. Zeng, Relationship between heat treatments and corrosion of Al–Si–Mg casting alloy. Adv. Mater. Res. 900, 96–99 (2014)

    Article  Google Scholar 

  23. A. Wiengmoon, P. Sukchot, N. Tareelap, J.T.H. Pearce, T. Chairuangsri, Effects of T6 heat treatment with double solution treatment on microstructure, hardness and corrosion resistance of cast Al–Si–Cu alloys. Arc. Metall. Mater. 60(2), 881–886 (2015)

    Article  Google Scholar 

  24. A.M. Cardinale, D. Macciò, G. Luciano, E. Canepa, P. Traverso, Thermal and corrosion behavior of as cast Al–Si alloys with rare earth elements. J. Alloys Compd. 695, 2180–2189 (2017)

    Article  Google Scholar 

  25. J.G. Kaufman, E.L. Rooy, Aluminum Alloy Castings: Properties, Processes, and Applications (Materials Park, ASM International, 2004), p. 14

    Google Scholar 

  26. R.W. Revie, H.H. Uhlig, Corrosion and Corrosion Control—An Introduction to Corrosion Science and Engineering (Wiley, Hoboken, 2008), p. 394

    Google Scholar 

  27. F. Toptan, A.C. Alves, I. Kerti, E. Ariza, L.A. Rocha, Corrosion and tribocorrosion behavior of Al–Si–Cu–Mg alloy and its composites reinforced with B4C particles in 0.05 M NaCl solution. Wear 306(1–2), 27–35 (2013)

  28. G. Svenningsen, J.E. Lein, A. Bjorgum, J.H. Nordlien, Y. Yu, K. Nisanciogly, Effect of low copper content and heat treatment on intergranular corrosion of model AlMgSi alloys. Corros. Sci. 48, 226–242 (2006)

    Article  Google Scholar 

  29. A. Hossain, F. Gulshan, A.S.W. Kurny, Electrochemical corrosion behaviour of Ni-containing hypoeutectic Al–Si alloy. J. Electrochem. Sci. Eng. 5, 173–179 (2015)

    Google Scholar 

  30. H.O. Santos, F.M. Reis, C.T. Kunioshi, J.L. Rossi, I. Costa, Corrosion performance of Al–Si–Cu hypereutectic alloys in a synthetic condensed automotive solutions. Mater. Res. 8(2), 155–159 (2005)

    Article  Google Scholar 

  31. S. Zor, M. Zeren, H. Ozkazanc, E. Karakulak, Effect of Cu content on the corrosion of Al–Si eutectic alloys in acidic solutions. Anti-Corros. Methods Mater. 57(4), 185–191 (2010)

    Article  Google Scholar 

  32. R. Arrabal, B. Mingo, A. Pardo, M. Mohedano, E. Matykina, I. Rodrigues, Pitting corrosion of rheocast A356 aluminium alloy in 3.5 wt% NaCl. Corros. Sci. 73, 342–355 (2013)

  33. R.A.M. Anaee, Study of Corrosion Behavior of Al-Si-Cu/WC Composites in 0.1 N NaOH. JKSUS 26(1), 55–65 (2015)

  34. M.V. Rendón, J.A. Calderón, Evaluation of the corrosion behavior of the Al-356 alloy in NaCl solutions. Quim. Nova 34(7), 1163–1166 (2011)

    Article  Google Scholar 

  35. Y.H. Cho, H.-C. Lee, K.H. Oh, A.K. Dahle, Effect of strontium and phosphorus on eutectic Al–Si nucleation and formation of β-Al5FeSi in hypoeutectic Al–Si foundry alloys. Metall. Mater. Trans. A 39(10), 2435–2448 (2008)

    Article  Google Scholar 

  36. K. Al–Helal, I.C. Stone, Z. Fan, Simultaneous primary Si refinement and eutectic modification in hypereutectic Al-Si alloys. Trans. Indian Inst. Met. 65(6), 663–667 (2012)

    Article  Google Scholar 

  37. M. Tiryakioglu, V.J. Campbell, Guidelines for designing metal casting research: application to aluminium alloy casting. Int. J. Cast Met. Res. 20(1), 25–29 (2007)

    Article  Google Scholar 

  38. Y. Sui, Q. Wang, G. Wang, T. Liu, Effects of Sr content on the microstructure and mechanical properties of cast Al–12Si–4Cu–2Ni–0.8Mg alloys. J. Alloys Compd. 622, 572-579 (2015)

  39. S. Farahany, A. Ourdjini, H.R. Bakhsheshi-Rad, Microstructure, mechanical properties and corrosion behavior of Al–Si–Cu–Zn–X (X = Bi, Sb, Sr) die cast alloy. Trans. Nonferrous Met. Soc. China 26(1), 28–38 (2016)

    Article  Google Scholar 

  40. C. Bidmeshki, V. Abouei, H. Saghafian, S.G. Shabestari, M.T. Noghani, Effect of Mn addition on Fe-rich intermetallics morphology and dry sliding wear investigation of hypereutectic Al-17.5%Si alloys. J. Mater. Res. Technol. 5(3), 250–258 (2016)

  41. G.-H. Zhang, J.-X. Zhang, B.-C. Li, W. Cai, Characterization of tensile fracture in heavily alloyed Al–Si piston alloy. Prog. Nat. Sci-Mater. 21(5), 380–385 (2011)

    Article  Google Scholar 

  42. C. Liang, Z.-H. Chen, Z.-Y. Huang, F.-Q. Zu, Optimizing microstructures and mechanical properties of hypereutectic Al–18%Si alloy via manipulating its parent liquid state. Mater. Sci. Eng. A 690, 387–392 (2017)

    Article  Google Scholar 

  43. N. Idusuyi, O.O. Ajide, O.O. Oluwole, O.A. Arotiba, Electrochemical Impedance Study of an Al6063–12%SiC–Cr Composite Immersed in 3 wt% Sodium Chloride. Procedia Manufacturing 7, 413-419 (2017)

  44. V. Guillaumin, G. Mankowski, Localized corrosion of 6056 T6 aluminium alloy in chloride media. Corros. Sci. 42, 105–125 (2000)

    Article  Google Scholar 

  45. S. Gudic, L. Vrsalovic, M. Kliskic, I. Jerkovic, A. Radonic, M. Zekic, Corrosion Inhibition of AA 5052 aluminium alloy in NaCl solution by different types of honey. Int. J. Electrochem. Sci. 11, 998–1011 (2016)

    Google Scholar 

  46. F. Zeng, Z. Wei, J. Li, C. Li, X. Tan, Z. Zhang, Z. Zheng, Corrosion mechanism associated with Mg2Si and Si particles in Al–Mg–Si alloys. Trans. Nonferrous Met. Soc. China 21(12), 2559–2567 (2011)

    Article  Google Scholar 

  47. R.A. Rodríguez-Diaz, J. Uruchurtu-Chavarín, A.M. Cotero-Villegas, S. Valdez, J.A. Juárez-Islas, Corrosion behavior of AlMgSi alloy in aqueous saline solution. Int. J. Electrochem. Sci. 10, 1792–1808 (2015)

    Google Scholar 

  48. G.R. Kramer, C.M. Mendez, A.E. Ares, Evaluation of corrosion resistance of aluminum-based alloys in bioethanol produced in misiones. Procedia Mater. Sci. 9, 341–349 (2015)

    Article  Google Scholar 

  49. H.H. Hassan, K. Fahmy, Pitting corrosion of tin by acetate anion in acidic media. Int. J. Electrochem. Sci. 3, 29–43 (2008)

    Google Scholar 

  50. I.T.E. Fonseca, N. Lima, J.A. Rodrigues, M.I.S. Pereira, J.C.S. Salvador, M.G.S. Ferreira, Passivity breakdown of Al 2024-T3 alloy in chloride solutions: a test of the point defect model. Electrochem. Commun. 4(5), 353–357 (2002)

    Article  Google Scholar 

  51. K. Magdic, V. Horvat-Radosevic, The role of electrochemical impedance spectroscopy in the characterization of electrodes and devices for energy conversion and storage. Kem. Ind. 62(3–4), 81–91 (2013) (in Croatian)

  52. M.S. Kaiser, M.R. Qadir, S. Dutta, Electrochemical corrosion performance of commercially used aluminium engine block and piston in 0.1 M NaCl. J. Mech. Eng. 45(1), 48–52 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanja Asanovic.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scepanovic, J., Asanovic, V., Herenda, S. et al. Microstructural Characteristics, Mechanical Properties, Fracture Analysis and Corrosion Behavior of Hypereutectic Al–13.5Si Alloy. Inter Metalcast 13, 700–714 (2019). https://doi.org/10.1007/s40962-019-00315-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-019-00315-2

Keywords

Navigation