Advertisement

Grain Refinement of Mg–Al Alloys Inoculated by MgO Powder

  • Zhiqiang Ma
  • Chengbo Li
  • Jun Du
  • Meiyan Zhan
Article
  • 46 Downloads

Abstract

Mg–Al alloys were inoculated by MgO powder. The effects of MgO addition amount, holding time after MgO addition and Al content on the grain refining efficiency were systematically investigated in the present study. The refining mechanism was discussed. MgO cannot serve as the effective substrate of primary α-Mg phase. Significant grain refinement of Mg–Al alloys with the Al content over than 2% could be obtained. Al is an indispensable element to ensure the grain refining efficiency of MgO addition on Mg alloys. The optimum MgO powder addition amount and the holding time were about 1.5% and 10 min, respectively. MgO could react with Al in Mg melt, resulting in the formation of MgAl2O4 particles. As the comparative experiments, the grain refinement on the pure Mg and Mg–3%Al alloy inoculated by MgAl2O4 powder was proven. Based on theoretical calculation and experimental results, the grain refinement of Mg–Al alloy inoculated by MgO powder is attributed to the newly formed MgAl2O4 particles, which could act as the effective heterogeneous nuclei of primary α-Mg phase.

Keywords

grain refinement inoculation Mg–Al alloys MgO MgAl2O4 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51871100).

References

  1. 1.
    H. Yu, Y. Xin, M. Wang, Q. Liu, J. Mater. Sci. Technol. 34, 248–256 (2018)CrossRefGoogle Scholar
  2. 2.
    M. Sun, G. Wu, W. Wang, W. Ding, Mater. Sci. Eng. A 523, 145–151 (2009)CrossRefGoogle Scholar
  3. 3.
    M. Sun, M.A. Easton, D.H. StJohn, G. Wu, T.B. Abbott, W. Ding, Adv. Eng. Mater. 15, 373–378 (2013)CrossRefGoogle Scholar
  4. 4.
    J. Wang, P. Song, S. Gao, Y. Wei, F. Pan, J. Mater. Sci. 47, 2005–2010 (2011)CrossRefGoogle Scholar
  5. 5.
    P. Saha, S. Viswanathan, Int. J. Metalcast. 4, 70–71 (2010)CrossRefGoogle Scholar
  6. 6.
    Y. Ali, D. Qiu, B. Jiang, F. Pan, M.-X. Zhang, J. Alloys Compd. 619, 639–651 (2015)CrossRefGoogle Scholar
  7. 7.
    S. Liu, Y. Chen, H. Han, J. Alloys Compd. 624, 266–269 (2015)CrossRefGoogle Scholar
  8. 8.
    A. Elsayed, C. Ravindran, B.S. Murty, Int. J. Metalcast. 5, 29–41 (2011)CrossRefGoogle Scholar
  9. 9.
    S. Saha, C. Ravindran, Int. J. Metalcast. 9, 33–42 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Saha, C. Ravindran, Int. J. Metalcast. 9, 39–48 (2015)CrossRefGoogle Scholar
  11. 11.
    M. Qian, A. Ramirez, A. Das, D.H. StJohn, J. Cryst. Growth 312, 2267–2272 (2010)CrossRefGoogle Scholar
  12. 12.
    D.N. Li, J.R. Luo, S.S. Wu, Z.H. Xiao, Y.W. Mao, X.J. Song, G.Z. Wu, J. Mater. Process. Technol. 129, 431–434 (2002)CrossRefGoogle Scholar
  13. 13.
    P. Cao, M. Qian, D.H. StJohn, Scr. Mater. 56, 633–636 (2007)CrossRefGoogle Scholar
  14. 14.
    G. Han, X. Liu, Acta Mater. 114, 54–66 (2016)CrossRefGoogle Scholar
  15. 15.
    P. Cao, M. Qian, D.H. StJohn, Scr. Mater. 51, 125–129 (2004)CrossRefGoogle Scholar
  16. 16.
    J. Du, M. Wang, M. Zhou, W. Li, J. Alloys Compd. 592, 313–318 (2014)CrossRefGoogle Scholar
  17. 17.
    S. Sasaki, K. Fujino, Y. Takéuchi, Proc. Jpn. Acad. 55, 43–48 (2006)CrossRefGoogle Scholar
  18. 18.
    F. Czerwinski, Acta Mater. 50, 2639–2654 (2002)CrossRefGoogle Scholar
  19. 19.
    A. Elsayed, E. Vandersluis, S. Lun Sin, C. Ravindran, Int. J. Metalcast. 11, 749–765 (2016)CrossRefGoogle Scholar
  20. 20.
    T. Yamanaka, Y. Takéuchi, Z. Krist. Cryst. Mater. 165, 65–78 (1983)CrossRefGoogle Scholar
  21. 21.
    Y. Wang, H. Li, Z. Fan, Trans. Indian Inst. Met. 65, 653–661 (2012)CrossRefGoogle Scholar
  22. 22.
    K. Kim, Surf. Interface Anal. 47, 429–438 (2015)CrossRefGoogle Scholar
  23. 23.
    K. Kim, Metallogr. Microstruct. Anal. 3, 233–237 (2014)CrossRefGoogle Scholar
  24. 24.
    R. Sri Harini, J. Nampoothiri, B. Nagasivamuni, B. Raj, K.R. Ravi, Mater. Lett. 145, 328–331 (2015)CrossRefGoogle Scholar
  25. 25.
    D. Zhang, L. Wang, M. Xia, N. Hari Babu, J.G. Li, Mater. Charact. 119, 92–98 (2016)CrossRefGoogle Scholar
  26. 26.
    H.T. Li, Y. Wang, Z. Fan, Acta Mater. 60, 1528–1537 (2012)CrossRefGoogle Scholar
  27. 27.
    H.M. Fu, D. Qiu, M.X. Zhang, H. Wang, P.M. Kelly, J.A. Taylor, J. Alloys Compd. 456, 390–394 (2008)CrossRefGoogle Scholar
  28. 28.
    Y. Ali, D. Qiu, B. Jiang, F. Pan, M. Zhang, Scr. Mater. 114, 103–107 (2016)CrossRefGoogle Scholar
  29. 29.
    Z. Fan, Y. Wang, M. Xia, S. Arumuganathar, Acta Mater. 57, 4891–4901 (2009)CrossRefGoogle Scholar
  30. 30.
    J. Du, Z. Yao, S. Han, W. Li, J. Magnes. Alloys 5, 181–188 (2017)CrossRefGoogle Scholar
  31. 31.
    T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams, 2nd edn. (ASM International, Materials Park, 1990)Google Scholar
  32. 32.
    K. Grjotheim, O. Herstad, J.M. Toguri, Can. J. Chem. 39, 443–450 (1961)CrossRefGoogle Scholar
  33. 33.
    E.T. Turkdogan, Physical Chemistry of High Temperature Technology (Academic Press, New York, 1980), pp. 5–26Google Scholar
  34. 34.
    Y. Wang, G. Peng, Z. Fan, in Magnesium Technology, ed. by K.N. Solanki, D. Orlov, A. Singh, N.R. Neelameggham (Springer, Cham, 2017), pp. 99–106Google Scholar
  35. 35.
    H. Song, M. Zhao, J. Li, Mod. Phys. Lett. B 30, 1650152 (2016)CrossRefGoogle Scholar
  36. 36.
    M.X. Zhang, P.M. Kelly, M. Qian, J.A. Taylor, Acta Mater. 53, 3261–3270 (2005)CrossRefGoogle Scholar
  37. 37.
    M.X. Zhang, P.M. Kelly, Acta Mater. 53, 1085–1096 (2005)CrossRefGoogle Scholar
  38. 38.
    M.X. Zhang, P.M. Kelly, Acta Mater. 53, 1073–1084 (2005)CrossRefGoogle Scholar
  39. 39.
    T.J. Chen, R.Q. Wang, Y. Ma, Y. Hao, Mater. Des. 34, 637–648 (2012)CrossRefGoogle Scholar
  40. 40.
    T.J. Chen, X.D. Jiang, Y. Ma, Y.D. Li, Y. Hao, J. Alloys Compd. 496, 218–225 (2010)CrossRefGoogle Scholar
  41. 41.
    B. Nagasivamuni, K.R. Ravi, J. Alloys Compd. 622, 789–795 (2015)CrossRefGoogle Scholar
  42. 42.
    L. Wang, Y. Feng, E. Guo, Y. Yang, Y. Chen, L. Wang, Int. J. Metalcast. (2018).  https://doi.org/10.1007/s40962-018-0224-5 CrossRefGoogle Scholar
  43. 43.
    B. Jiang, W. Liu, D. Qiu, M. Zhang, F. Pan, Mater. Chem. Phys. 133, 611–616 (2012)CrossRefGoogle Scholar
  44. 44.
    C. Jun, Z. Qing, L. Quanan, Int. J. Metalcast. (2018).  https://doi.org/10.1007/s40962-018-0222-7 CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2018

Authors and Affiliations

  1. 1.Department of Metallic Materials, School of Materials Science and EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations