International Journal of Metalcasting

, Volume 13, Issue 1, pp 180–189 | Cite as

Ultrasonic Melt Treatment of Light Alloys

  • Joaquim Barbosa
  • Hélder Puga


The application of ultrasonic vibrations when casting aluminium alloys can improve the final quality of castings. Moreover, ultrasound has no direct environmental impact as compared to traditional melt treatment routes. Ultrasound has been used with different purposes in aluminium casting: (1) degassing of aluminium alloys leading to high density and virtually gas porosity free castings; (2) promoting nucleation, thus leading to highly refined microstructures, including refinement and dispersion of intermetallic compounds; (3) improving castings mechanical properties either by promoting heterogeneous nucleation and development of equiaxed globular structures or dendrite fragmentation. This article presents the experimental work carried out so far at the University of Minho, Portugal, in this field and focuses on the results and benefits of ultrasonic melt processing when compared with traditional alternatives like the chemical routes.


aluminium alloys casting nucleation degassing ultrasound 



This study was supported by FEDER/COMPETE funds and by national funds through FCT and was developed on the aim of the research Postdoctoral grant SFRH/BPD/76680/2011. Also, this work has been supported by FCT with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020—Programa Operacional Competitividade e Internacionalização (POCI) with the reference project POCI-01-0145-FEDER-006941.


  1. 1.
    J.E. Gruzleski, B.M. Closset, The Treatment of Liquid Aluminium-Silicon Alloys, 1st edn. (AFS, Des Plaines, 1990)Google Scholar
  2. 2.
    A.R.N. Meidani, M. Hasan, J. Mater. Process. Technol. 147, 311–320 (2004)CrossRefGoogle Scholar
  3. 3.
    M. Merlin et al., J. Mater. Process. Technol. 209, 1060–1073 (2009)CrossRefGoogle Scholar
  4. 4.
    K.G. Basavakumar et al., Mater. Charact. 59, 283–289 (2008)CrossRefGoogle Scholar
  5. 5.
    Q.G. Wang et al., J. Light Met. 1, 73–84 (2001)CrossRefGoogle Scholar
  6. 6.
    G.K. Sigworth, Grain refinement of aluminium casting alloys. AFS Trans. 67(2), 1–12 (2007)Google Scholar
  7. 7.
    J.A. Spittle, Int. J. Cast Met. Res. 19, 210–222 (2006)CrossRefGoogle Scholar
  8. 8.
    J.A. García-Hinojosa et al., J. Mater. Process. Technol. 143–144, 306–310 (2003)CrossRefGoogle Scholar
  9. 9.
    J.F. Major, J.W. Rutter, Mater. Sci. Technol. 5(7), 645–656 (1989)CrossRefGoogle Scholar
  10. 10.
    S.D. Mcdonald et al., Metall. Mater. Trans. B 35B, 1097–1106 (2004)CrossRefGoogle Scholar
  11. 11.
    S.D. Mcdonald, A.K. Dahle, J.A. Taylor, D.H. St John, Metall. Mater. Trans. B 35B, 1097–1106 (2004)CrossRefGoogle Scholar
  12. 12.
    S.M. Miresmaeili, J. Campbell, S.G. Shabestari, S.M.A. Boutorabi, Metall. Mater. Trans. A 36A, 2342–2349 (2005)Google Scholar
  13. 13.
    O.V. Abramov, High—Intensity Ultrasonic: Theory and Industrial Application, 1st edn. (Gordon and Breach Publishers, Amsterdam, 1998), pp. 115–120Google Scholar
  14. 14.
    G.I. Eskin, Ultrasonic Treatment of Light Alloys, 1st edn. (Gordon and Breach: Science Publishers, Amsterdam, 1998), pp. 39–45CrossRefGoogle Scholar
  15. 15.
    H. Puga, J. Barbosa, S. Costa, S. Ribeiro, A.M.P. Pinto, M. Prokic, Mater. Sci. Eng. A 560, 589–595 (2013)CrossRefGoogle Scholar
  16. 16.
    F. Gomes, H. Puga, J. Barbosa, C.S. Ribeiro, J. Mater. Sci. 46(14), 4922–4936 (2011)CrossRefGoogle Scholar
  17. 17.
    K. Brabec, V. Mornstein, Cent. Eur. J. Biol. CEJB 2(2), 213–221 (2007)Google Scholar
  18. 18.
    C. Allen, Q. Han, Int. Metalcasting 5, 69 (2011)CrossRefGoogle Scholar
  19. 19.
    X. Liu, S. Jia, L. Nastac, Int. Metalcasting 8, 51 (2014)CrossRefGoogle Scholar
  20. 20.
    W. Khalifa, Y. Tsunekawa, M. Okumiya, AFS Trans. 118, 91–98 (2010)Google Scholar
  21. 21.
    X. Jian, C. Xu, T. Meek, & Han. Q AFS Trans. 113, 131–138 (2005)Google Scholar
  22. 22.
    X. Li, Y. Yang, D. Weiss, AFS Trans. 115, 249–260 (2007)Google Scholar
  23. 23.
    P.C. Lynch, R.C. Voigt, J.C. Furness Jr., D. Paulsen, AFS Trans. 118, 57–68 (2010)Google Scholar
  24. 24.
    H. Puga, J. Barbosa, J. Gabriel, E. Seabra, S. Ribeiro, M. Prokic, J. Mater. Process. Technol. 211(6), 1026–1033 (2011)CrossRefGoogle Scholar
  25. 25.
    H. Puga, J. Barbosa, J.C. Teixeira, M. Prokic, J. Mater. Eng. Perform. 23(10), 3736–3745 (2014)CrossRefGoogle Scholar
  26. 26.
    H. Puga, J. Barbosa, E. Seabra, S. Ribeiro, M. Prokic, Mater. Lett. 63, 806–808 (2009)CrossRefGoogle Scholar
  27. 27.
    H. Xu, X. Jian, T.T. Meek, Q. Han, Mater. Lett. 58, 3669–3673 (2004)CrossRefGoogle Scholar
  28. 28.
    J.W. Li, T. Momono, Y. Tayu, Y. Fu, Mater. Lett. 62, 4152–4154 (2008)CrossRefGoogle Scholar
  29. 29.
    D. V. Neff, Nonferrous molten metal processes, casting, in Metals Handbook, vol. 15, 9th edn. (ASM International, 1988)Google Scholar
  30. 30.
    W. Khalifa, Y. Tsunekawa, M. Okumiya, Int. J. Cast Met. Res. 21, 129–134 (2008)CrossRefGoogle Scholar
  31. 31.
    X. Jian, H. Xu, T.T. Meek, Q. Han, Mater. Lett. 59, 190–193 (2005)CrossRefGoogle Scholar
  32. 32.
    J. Barbosa, H. Puga, J. Oliveira, S. Ribeiro, M. Prokic, Mater. Chem. Phys. 148(3), 1163–1170 (2014)CrossRefGoogle Scholar
  33. 33.
    H. Puga, J. Barbosa, J. Adv. Mater. Res. 690–693, 2366–2370 (2013)CrossRefGoogle Scholar
  34. 34.
    J. Barbosa, H. Puga, C.S. Ribeiro, O.M.N.D. Teodoro, C. Monteiro, Int. J. Cast Met. Res. 19(6), 331–338 (2006)CrossRefGoogle Scholar
  35. 35.
    C.M. Dinnis, J.A. Taylor, A.K. Dahle, Scr. Mater. 53, 955–958 (2005)CrossRefGoogle Scholar
  36. 36.
    C.J. Todaro, M.A. Easton, D. Qiu, G. Wang, D.H.S.T. John, M. Qian, Metall. Mater. Trans. A 48A(11), 5579–5590 (2017)CrossRefGoogle Scholar
  37. 37.
    J. Barbosa, H. Puga, J. Oliveira, S. Ribeiro, M. Prokic, Mater. Chem. Phys. 148(3), 1163–1170 (2014)CrossRefGoogle Scholar
  38. 38.
    L.A. Narayanan, F.H. Samuel, J.E. Gruzleski, Met. Mater. Trans. A 25, 1761–1773 (1994)CrossRefGoogle Scholar
  39. 39.
    J.D. Hunt, K.A. Jackson, J. Appl. Phys. 37, 254–257 (1966)CrossRefGoogle Scholar
  40. 40.
    J. Barbosa, H. Puga, J. Mater. Process. Technol. 244(6), 150–156 (2017)CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2018

Authors and Affiliations

  1. 1.CMEMS – Center for Microelectromechanical SystemsUniversidade do MinhoAzurém, GuimarãesPortugal

Personalised recommendations