Advertisement

International Journal of Metalcasting

, Volume 12, Issue 4, pp 825–838 | Cite as

Effect of Ni and Mn Additions on the Ambient and High-Temperature Performance of Zr-Containing Al–Si–Cu–Mg-Based Alloys: Role of Precipitation Hardening

  • Loay Alyaldin
  • M. H. Abdelaziz
  • Agnes M. Samuel
  • Herbert W. Doty
  • Salvador Valtierra
  • Fawzy H. Samuel
Article
  • 68 Downloads

Abstract

Alloys such as the 354.1 (Al–9 wt% Si–1.8 wt% Cu–0.5 wt% Mg) alloys show a greater response to heat treatment as a result of the presence of both Cu and Mg. These alloys display excellent strength values at both low and high temperatures. Additions of Zr, Ni and Mn are expected to maintain the alloy performance at still higher temperatures. The present study was carried out to investigate the effects of these additions on the tensile properties of 354.1 alloy castings at ambient and at high temperature (250 °C), using different holding times at testing temperature. Alloys were prepared using 0.2 wt% Ti grain-refined 354.1 alloy, comprising alloy R (354.1 + 0.25 wt% Zr) considered as the base or reference alloy, alloy S (354.1 + 0.25 wt% Zr + 2 wt% Ni) and alloy U (354.1 + 0.25 wt% Zr + 0.75 wt% Mn), containing Ni and Mn. The latter two alloys perform better under high-temperature conditions following 1-h stabilization at 250 °C, displaying strength values of 226.64/230 MPa UTS and 225/226 MPa YS, respectively. For a prolonged stabilization time (200 h at 250 °C), however, the strength values are reduced to 111/96 MPa UTS and 90/78 MPa YS. The decrease in strength and increase in ductility observed after prolonged stabilization are related to alloy softening, which occurs because of the overaging conditions during which the equilibrium precipitates form, leading to loss of coherency strain between the precipitates and the matrix.

Keywords

aluminum alloys additives tensile testing precipitation FESEM 

Notes

Acknowledgements

The authors would like to thank Amal Samuel for enhancing the quality of the images presented in this article.

References

  1. 1.
    J. Hernandez-Sandoval, G.H. Garza-Elizondo, A.M. Samuel, S. Valtierra, F.H. Samuel, Mater. Design 58, 89 (2014)CrossRefGoogle Scholar
  2. 2.
    Y. Fan, M.M. Makhlouf, The effect of introducing the Al–Ni eutectic composition into Al–Zr–V alloys on microstructure and tensile properties. Mater. Sci. Eng. A 654, 228–235 (2016)CrossRefGoogle Scholar
  3. 3.
    Y. Fan, M.M. Makhlouf, Stabilizing the strengthening precipitates in aluminum–manganese alloys by the addition of tungsten. Mater. Sci. Eng. A 691, 1–7 (2017)CrossRefGoogle Scholar
  4. 4.
    Y. Fan, M.M. Makhlouf, Precipitation strengthening in aluminum–zirconium–vanadium alloys. J. Alloys Compd. 725, 171–180 (2017)CrossRefGoogle Scholar
  5. 5.
    Y. Fan, M.M. Makhlouf, The Al–Al3Ni eutectic reaction: crystallography and mechanism of formation. Metall. Mater. Trans. A 46, 3808–3812 (2015)CrossRefGoogle Scholar
  6. 6.
    G.H. Garza-Elizondo, S.A. Alkahtani, A.M. Samuel, F.H. Samuel, in Light Metals 2014, ed. by J. Grandfield (Springer, Berlin, 2014), p. 305CrossRefGoogle Scholar
  7. 7.
    Z. Jia, G. Hu, B. Forbord, J.K. Solberg, Mater. Sci. Eng. A 444(1), 284 (2007)CrossRefGoogle Scholar
  8. 8.
    G. Wang, X. Bian, W. Wang, J. Zhang, Mater. Lett. 57(24), 4083 (2003)CrossRefGoogle Scholar
  9. 9.
    N.A. Belov, D.G. Eskin, N.N. Avxentieva, Acta Mater. 53(17), 4709 (2005)CrossRefGoogle Scholar
  10. 10.
    F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann, P.J. Uggowitzer, Mater. Sci. Forum 690, 274 (2011)CrossRefGoogle Scholar
  11. 11.
    Y.H. Cho, D.H. Joo, C.H. Kim, H.C. Lee, The effect of alloy addition on the high temperature properties of over-aged Al–Si (CuNiMg) cast alloys. Mater. Sci. Forum 519(2006), 461 (2006)CrossRefGoogle Scholar
  12. 12.
    S. Seifeddine, S. Johansson, I.L. Svensson, Mater. Sci. Eng. A 490(1), 385 (2008)CrossRefGoogle Scholar
  13. 13.
    A.M.A. Mohamed, F.H. Samuel, A.M. Samuel, H.W. Doty, Mater. Design 30(10), 4218 (2009)CrossRefGoogle Scholar
  14. 14.
    J.Y. Hwang, H.W. Doty, M.J. Kaufman, Mater. Sci. Eng. A 488(1), 496 (2008)CrossRefGoogle Scholar
  15. 15.
    L. Alyaldin, Effects of alloying elements on room and high temperature tensile properties of Al–Si–Cu–Mg base alloys, M.SC. Thesis, UQAC, Canada, 2017Google Scholar
  16. 16.
    G.H. Garza-Elizondo, Effect of Ni, Mn, Zr and Sc additions on the performance of Al–Si–Cu–Mg alloys, PhD Thesis, UQAC, 2016Google Scholar
  17. 17.
    A.M.A. Mohamed, F.H. Samuel, Mater. Sci. Eng. A 577, 64 (2013)CrossRefGoogle Scholar
  18. 18.
    Z. Asghar, G. Requena, F. Kubel, Mater. Sci. Eng. A 527, 5691 (2010)CrossRefGoogle Scholar
  19. 19.
    G.A. Zaki, A.M. Samuel, H.W. Doty, F.H. Samuel, Int. J. Metalcasting 11(3), 581 (2017)CrossRefGoogle Scholar
  20. 20.
    Y. Han, A.M. Samuel, F.H. Samuel, S. Valtierra, H.W. Doty, Trans. Am. F. 116, 79 (2008)Google Scholar
  21. 21.
    A.M. Samuel, E.M. Elgallad, H.W. Doty, S. Valtierra, F.H. Samuel, Int. J. Metalcasting 11(2), 240 (2017)CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2018

Authors and Affiliations

  1. 1.Département des Sciences appliquéesUniversité du Québec à ChicoutimiChicoutimiCanada
  2. 2.General Motors Materials EngineeringPontiacUSA
  3. 3.Nemak, S.AGarza GarciaMexico

Personalised recommendations