Effect of Strontium Modification on Porosity Formation in A356 Alloy

  • Qian Wang
  • Qitang HaoEmail author
  • Wentao Yu


Sr-modified Al–Si alloys are promising for automotive and aerospace industrial applications. However, Sr modifier increases the porosity level and deteriorates the performance of the castings, which has confused foundrymen for several decades. Many researchers have studied the phenomenon, but there is no unified explanation. In this study, two types of Sr modifier (50 ppm and 250 ppm) are applied to explore the effect of Sr modification on the surface oxide film and the porosity of the castings. The results of optical emission spectrometer and X-ray photoelectron spectroscopy (XPS) reveal that the surface oxide film has some degree of Sr segregation. Combining the high-resolution XPS spectrums with electron probe microanalysis–wavelength-dispersive spectroscopic (EPMA–WDS), it can be found that a small amount of SrO is distributed on the Al2O3 film. Further analyzing the surface oxide film by scanning electron microscopy and EPMA mapping, it can be concluded that the compact Al2O3 film is fractured by congregated SrO and then some new Al2O3 films and oxide inclusions are formed in the cracks. Those can cause the increase in the porosity. And the result of reduced pressure test (RPT) shows that the densities of RPT samples are decreasing with the increase in Sr content. It means that Sr modification dose increase the porosity of the A356 alloy castings.


A356 alloy Sr modification oxide film porosity 



We are grateful for the assistance from State Key Laboratory of Solidification Processing and Material Analysis and Testing Center of Shaanxi Province.


  1. 1.
    N. Tenekedjiev, J.E. Gruzleski, Hypereutectic aluminum–silicon casting alloys—a review. Cast Metals 3(2), 96–105 (1990)CrossRefGoogle Scholar
  2. 2.
    G.K. Sigworth, Fundamentals of solidification in aluminum castings. Int. J. Metalcast. 8(1), 7–20 (2014)CrossRefGoogle Scholar
  3. 3.
    J. Campbell, Metal casting processes, metallurgy techniques and design complete, Casting Handbook, 2nd edn. (Elsevier Ltd, Amsterdam, 2011), pp. 269–300Google Scholar
  4. 4.
    A. Pacz, Alloy U.S. Patent No. 1, 387, 900 (1921)Google Scholar
  5. 5.
    S. Hegde, K.N. Prabhu, Modification of eutectic silicon in Al–Si alloys. Mater. Sci. 43(9), 3009–3027 (2008)CrossRefGoogle Scholar
  6. 6.
    F. Zu, X. Li, Functions and mechanism of modification elements in eutectic solidification of Al–Si alloys: a brief review. China Foundry 11(4), 287–295 (2014)Google Scholar
  7. 7.
    A.M. Samuel, H.W. Doty, S. Valtierra, F.H. Samuel, Porosity formation in al–si sand mold castings. Int. J. Metalcast. 11(4), 812–822 (2017)CrossRefGoogle Scholar
  8. 8.
    H. Liao, W. Song, Q. Wang, L. Zhao, R. Fan, F. Jia, Effect of Sr addition on porosity formation in directionally solidified A356 alloy. Int. J. Cast Met. Res. 26(4), 201–208 (2013)CrossRefGoogle Scholar
  9. 9.
    G. Sigworth, Understanding quality in aluminum castings. Int. J. Metalcast. 5(1), 7–22 (2011)CrossRefGoogle Scholar
  10. 10.
    D. Emadi, J.E. Gruzleski, J.M. Toguri, The effect of Na and Sr modification on surface tension and volumetric shrinkage of A 356 alloy and their influence on porosity formation. Metall. Trans. B 24(6), 1055–1063 (1993)CrossRefGoogle Scholar
  11. 11.
    X. Bian, Z. Zhang, X. Liu, Effect of strontium modification on hydrogen content and porosity shape of al–si alloys. Mater. Sci. Forum 331–337, 361–366 (2000)CrossRefGoogle Scholar
  12. 12.
    D. Argo, J.E. Gruzleski, Porosity in modified aluminum alloy castings. Trans. Am. Foundrym. Soc. 96, 65–74 (1988)Google Scholar
  13. 13.
    A.K. Dahle, K. Nogita, S.D. Mcdonald, C. Dinnis, L. Lu, Eutectic modification and microstructure development in Al–Si alloys. Mater. Sci. Eng. A 413–414(6), 243–248 (2005)CrossRefGoogle Scholar
  14. 14.
    S. Akhtar, L. Arnberg, M. Sabatino, D. Dispinar, M. Syvertsen, A comparative study of porosity and pore morphology in a directionally solidified a356 alloy. Int. J. Metalcast. 3(1), 39–52 (2009)CrossRefGoogle Scholar
  15. 15.
    D. Dispinar, J. Campbell, Critical assessment of reduced pressure test. Part 1: porosity phenomena. Int. J. Cast Metals Res. 17(5), 280–286 (2015)CrossRefGoogle Scholar
  16. 16.
    G.K. Sigworth, C. Wang, H. Huang, J.T. Berry, Porosity formation in modified and unmodified Al–Si alloy castings. Trans. Am. Foundrym. Soc. 102, 245–262 (1994)Google Scholar
  17. 17.
    S.M. Miresmaeili, J. Campbell, S.G. Shabestari, S.M.A. Boutorabi, Precipitation of Sr-rich intermetallic particles and their influence on pore formation in Sr-modified A356 alloy. Metall. Mater. Trans. A 36(9), 2341–2349 (2005)CrossRefGoogle Scholar
  18. 18.
    J. Gruzleski, W. La Orchan, H. Mulazimoglu, New reduced pressure test quantifies hydrogen content. Mod. Cast. 85(9), 47–49 (1995)Google Scholar
  19. 19.
    S.W. Hudson, D. Apelian, Inclusion detection in molten aluminum: current art and new avenues for in situ analysis. Int. J. Metalcast. 10(3), 289–305 (2016)CrossRefGoogle Scholar
  20. 20.
    M.H. Mulazimoglu, N. Handiak, Some observation on the reduced pressure test and hydrogen concertation of modified A356 alloy. Trans. Am. Foundrym. Soc. 97, 225–232 (1989)Google Scholar
  21. 21.
    Z. Zhang, X. Bian, Y. Wang, X. Liu, Microstructures and modification performance of melt-spun Al-10 Sr alloy. J. Mater. Sci. 37(20), 4473–4480 (2002)CrossRefGoogle Scholar
  22. 22.
    B. Closset, H. Dugas, M. Pekguleryuz, J.E. Gruzleski, The aluminum–strontium phase diagram. Metall. Mater. Trans. A 17(7), 1250–1253 (1986)CrossRefGoogle Scholar
  23. 23.
    C.B. Alcock, V.P. Itkin, The Al–Sr (aluminum–strontium) system. Bull. Alloy Ph. Diagr. 10(6), 624–630 (1989)CrossRefGoogle Scholar
  24. 24.
    K.J. Brondyke, P.D. Hess, Interpretation of vacuum gas test results for aluminum alloys. Trans. TMS-AIME 230, 1542–1546 (1964)Google Scholar
  25. 25.
    J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, J. Chastain, in Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, ed. by J. Chastain (Perkin-Elmer Corporation, Waltham, 1992), pp. 54–55Google Scholar
  26. 26.
    T.P. Hanusa, Strontium physical and chemical properties, in Encyclopedia of Metalloproteins, ed. by R.H. Kretsinger, V.N. Uversky, E.A. Permyakov (Springer, New York, 2013), pp. 2141–2149CrossRefGoogle Scholar
  27. 27.
    C. Xu, W. Gao, Pilling–Bedworth ratio for oxidation of alloys. Mater. Res. Innov. 3(4), 231–235 (2000)CrossRefGoogle Scholar
  28. 28.
    R. Bedworth, N. Pilling, The oxidation of metals at high temperatures. J. Inst. Metals 29(3), 529–582 (1923)Google Scholar

Copyright information

© American Foundry Society 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations