Advertisement

Ultrasonication Effects on the Microstructure Characteristics of the A380 Die Cast Alloy

  • Waleed Khalifa
  • Shimaa El-HadadEmail author
Article
  • 20 Downloads

Abstract

This investigation is an attempt to optimize the ultrasonic treatment (UST) temperature to refine the microstructure of A380 diecastings. As a preliminary estimation, isothermal UST was performed at the liquidus temperature, slightly above and at elevated temperature. This was followed by filling in a permanent mold. The ultrasonic vibrations were also applied to A380 at the same temperatures before being injected into the shot sleeve for diecasting. It was observed that in the isothermal treatment of both grain-refined and ungrain-refined alloys the UST at 600 °C and 595 °C changed the microstructure to a much finer and non-dendritic compared to UST at 620 °C. The effect was higher in the grain-refined alloy where Fe-phase transformed to a more globular form with UST at 600 °C and 595 °C. In case of diecasting without ultrasonic, coarse Si particles and massive Fe-intermetallics were observed. Applying UST to the melt of grain-refined alloy at high pouring temperatures (700 and 670 °C) did not show substantial effects on either Fe-intermetallics or Si particles. On the other hand, the grain-refined A380 alloy showed much finer grain sizes, highly globular Fe-phase and modified Si particles when UST is at lower pouring temperatures (640 and 620 °C). However, at pouring temperature of 675 °C, the unrefined alloy showed some grain refining while no effects on Fe-particles were observed.

Keywords

diecasting ultrasonic treatment Fe-intermetallics 

Notes

Acknowledgements

The authors would like to thank the support of Prof. Yoshiki Tsunekawa and the staff at the “Materials processing laboratory, Toyota Technological Institute-Japan” where the ultrasonic treatment experiments were performed.

References

  1. 1.
    A. Couture, Iron in aluminum casting alloys—a literature survey. AFS Int. Cast Met. J. 4, 9–17 (1981)Google Scholar
  2. 2.
    L. Bäckreud, G. Chai, Tamminen J., Solidification characteristics of aluminum, in AFS International Cast Metal Journal (1990)Google Scholar
  3. 3.
    J.E. Hatch (ed.), Aluminum: Properties and Physical Metallurgy (American Society for Metals, Metals Park, 1984)Google Scholar
  4. 4.
    S. El-Hadad, A.M. Samuel, F.H. Samuel, H.W. Doty, S. Valtierra, Effects of Bi and Ca additions on the microstructure of Sr-modified 319 type alloys under variable cooling conditions. AFS Trans. 112, 008 (2004)Google Scholar
  5. 5.
    P. Tang, W.F. Li, Y.J. Zhao, K. Wang, W.Z. Li, F. Zhan, Influence of strontium and lanthanum simultaneous addition on microstructure and mechanical properties of the secondary Al–Si–Cu–Fe alloy. J. Rare Earths 35, 485–493 (2017)CrossRefGoogle Scholar
  6. 6.
    R. Ahmad, M.B.A. Asmael, Influence of lanthanum on solidification, microstructure, and mechanical properties of eutectic Al–Si piston alloy. J. Mater. Eng. Perform. 25, 2799–2813 (2016)CrossRefGoogle Scholar
  7. 7.
    S. El-Hadad, A.M. Samuel, F.H. Samuel, H.W. Doty, S. Valtierra, Effects of Bi and Ca addition on the characteristics of eutectic Si particles in Sr-modified 319 alloys. Int. J. Cast Met. Res. 5, 551 (2003)CrossRefGoogle Scholar
  8. 8.
    J. Barbosa, H. Puga, Ultrasonic melt treatment of light alloys. Int. J. Metalcast. (2018).  https://doi.org/10.1007/2Fs40962-018-0248-x Google Scholar
  9. 9.
    A. Ahmed, S. El-Hadad, R. Reda, O. Dawood, Microstructure control in functionally graded Al–Si castings. Int. J. Cast Met. Res. (2018).  https://doi.org/10.1080/13640461.2018.1521564 Google Scholar
  10. 10.
    G.I. Eskin, Ultrasonic Treatment of Molten Aluminum (Metallurgiya, Moscow, 1965)Google Scholar
  11. 11.
    O.A. Kapustina, The Physical Principles of Ultrasonic Manufacturing (Nauka, Moscow, 1970)Google Scholar
  12. 12.
    G.I. Eskin, Ultrasonic Treatment of Light Alloy Melts (Gordon and Breach, New York, 1998)CrossRefGoogle Scholar
  13. 13.
    I.G. Brodova, P.S. Popel, G.I. Eskin, Liquid Metal Processing: Applications to Aluminum Alloy Production (Taylor & Francis, London, 2002), pp. 193–246Google Scholar
  14. 14.
    O.V. Abramov, L.A. Lobov, Ultrasound in Liquid and Solid Metals (CRC Press, Boca Raton, 1994), pp. 289–320Google Scholar
  15. 15.
    C. Allen, Q. Han, Grain refinement of pure aluminum using ultrasonics. Int. J. Metalcast. 5, 69–70 (2011)CrossRefGoogle Scholar
  16. 16.
    W. Khalifa, Y. Tsunekawa, M. Okumiya, Ultrasonic grain refining effects in A356 Al–Si cast alloy. AFS Trans. 118, 91–98 (2010)Google Scholar
  17. 17.
    H. Pugaa, S. Costa, J. Barbosa, S. Ribeirob, M. Prokic, Influence of ultrasonic melt treatment on microstructure and mechanical properties of AlSi9Cu3 alloy. J. Mater. Process. Technol. 211, 1729–1735 (2011)CrossRefGoogle Scholar
  18. 18.
    G.I. Eskin, Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys. Ultrason. Sonochem. 8, 319–325 (2001)CrossRefGoogle Scholar
  19. 19.
    H.K. Feng, S.R. Yu, Y.L. Li, L.Y. Gong, Effect of ultrasonic treatment on microstructures of hypereutectic Al–Si alloy. J. Mater. Process. Technol. 208, 330–335 (2008)CrossRefGoogle Scholar
  20. 20.
    L. Chong, S.S. Wu, G.U. Zhong, W.A. Li, A.N. Ping, Effect of ultrasonic vibration on Fe-containing intermetallic compounds of hypereutectic Al–Si alloys with high Fe content. Trans. Nonferrous Met. Soc. China 23(5), 1245–1252 (2013)CrossRefGoogle Scholar
  21. 21.
    J.A. Taylor, G.B. Schaffer, D.H. Stjohn, The role of iron in the formation of porosity in Al–Si–Cu-based casting alloys: part II. A phase-diagram approach. Metall. Mater. Trans. A 30(6), 1651–1655 (1999)CrossRefGoogle Scholar
  22. 22.
    W.U. Shu-sen, T. Xiao-lin, Y. Fukuda, T. Kanno, H. Nakae, Modification mechanism of hypereutectic Al-Si alloy with P-Na addition. Trans. Nonferrous Met. Soc. China 13, 1285–1289 (2003)Google Scholar
  23. 23.
    Y. Osawa, S. Takamori, T. Kimura, K. Mingawa, H. Kakisawa, Morphology of intermetallic compounds in Al–Si–Fe alloy and its control by ultrasonic vibration. Mater. Trans. 48, 2467–2475 (2007)CrossRefGoogle Scholar
  24. 24.
    W. Khalifa, Y. Tsunekawa, M. Okumiya, Effect of ultrasonic melt-treatment on the eutectic silicon and iron intermetallic phases in Al–Si cast alloys. Mater. Sci. Forum 431, 638–642 (2010)Google Scholar
  25. 25.
    W. Khalifa, S. El-Hadad, Y. Tsunekawa, Microstructure characteristics and tensile property of ultrasonic treated-Thixocast A356 alloy. Trans. Nonferrous Met. Soc. China 25, 3173–3180 (2015)CrossRefGoogle Scholar
  26. 26.
    W. Khalifa, F.H. Samuel, J.E. Gruzleski, H.W. Doty, S. Valtierra, Nucleation of Fe-intermetallic phases in the Al–Si–Fe alloys. Metall. Mater. Trans. A 36A, 1017–1032 (2005)CrossRefGoogle Scholar
  27. 27.
    L.A. Narayanan, F.H. Samuel, J.E. Gruzleski, Crystallization behavior of iron-containing intermetallic compounds in 319 aluminum-alloy. Metall. Mater. Trans. A 25, 1761–1773 (1994)CrossRefGoogle Scholar
  28. 28.
    G. Timelli, G. Camicia, S. Ferraro, Effect of grain refinement and cooling rate on the microstructure and mechanical properties of secondary Al–Si–Cu alloys. J. Mater. Eng. Perform. 23, 611–614 (2014)CrossRefGoogle Scholar
  29. 29.
    J. Rakhmonov, G. Timelli, F. Bonollo, Influence of grain refiner addition on the precipitation of Fe-rich phases in secondary AlSi7Cu3Mg alloys. Int. J. Met. Cast. 11, 294–304 (2017)Google Scholar
  30. 30.
    J.B. Ferguson, B.F. Schultz, K. Cho, P.K. Rohatgi, Correlation versus causation: the effects of ultrasonic melt treatment on cast metal grain size. Metals 29(4), 477–489 (2014)CrossRefGoogle Scholar
  31. 31.
    B. Tuttle, Molten metal processing treatments for the production of quality die castings, in Milwaukee, WI, Proceedings of SDCE 13th International Die Casting Congress and Exposition, G-T85-021 (1985)Google Scholar
  32. 32.
    J.L. Jostard, Understanding sludge. Die Cast. Eng. 6, 30 (1986)Google Scholar
  33. 33.
    X. Jian, H. Xu, T.T. Meek, Q. Han, S. Viswanathan, in Solidification of Aluminum Alloy A356 Under Ultrasonic Vibration; Solidification of Aluminum Alloys, ed. by M.G. Chu, D.A. Granger, Q. Han (The Minerals, Metals & Materials Society, 2004), pp. 73–79Google Scholar
  34. 34.
    H. Xu, Q. Hanb, T. Thomas, T. Meek, Effects of ultrasonic vibration on degassing of aluminum alloys. Mater. Sci. Eng. A 473, 96–104 (2008)CrossRefGoogle Scholar
  35. 35.
    H.R. Kotadia, M. Qian, D.G. Eskin, A. Das, On the microstructural refinement in commercial purity Al and Al-10 wt% Cu alloy under ultrasonication during solidification. Mater. Des. 132, 266–274 (2017)CrossRefGoogle Scholar
  36. 36.
    M.E. Moussa, M.A. Waly, M. Amin, Effect of high intensity ultrasonic treatment on microstructural modification and hardness of a nickel–aluminum bronze alloy. J. Alloy. Compd. 741, 804–813 (2018)CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2019

Authors and Affiliations

  1. 1.Department of Mining, Petroleum and Metallurgical Engineering, Faculty of EngineeringCairo UniversityGizaEgypt
  2. 2.Central Metallurgical Research & Development InstituteHelwanEgypt

Personalised recommendations