Advertisement

International Journal of Metalcasting

, Volume 12, Issue 4, pp 722–752 | Cite as

A Comparative Study of Graphite Growth in Cast Iron and in Analogous Systems

  • D. M. Stefanescu
  • G. Alonso
  • P. Larrañaga
  • E. De la Fuente
  • R. Suarez
Article

Abstract

Crystallization of graphite during the solidification and cooling of cast iron to room temperature has been the object of relentless, yet often inconclusive research. The importance of the subject cannot be underestimated, as graphite morphology is a major player in establishing the mechanical and physical properties of cast iron. Graphite crystallization is a complex phenomenon controlled by melt composition, local melt supersaturation, melt temperature and temperature gradient (cooling rate). All these are wide-ranging variables in the casting process. The results of a major effort to understand the complexity of graphite crystallization in cast iron is presented in this comparative study of crystal growth in materials with crystal morphologies similar to that of graphite. The analysis includes that of analogous materials such as eutectic aluminum–silicon and nickel carbon alloys, growth of other hexagonal or tetragonal crystals such as ice crystals and Al3Ti in aluminum–titanium alloys, growth of graphite through other processing routes such as chemical vapor deposition (a gas-to-solid transformation), and heat treatment of carbon steel (a solid-to-solid transformation), and the previous information on the crystallization of carbon in cast irons. An exhaustive analysis of the most widely accepted models for graphite growth is also presented.

Keywords

cast iron graphite morphology foliated dendrites lamellar graphite compacted graphite chunky graphite spheroidal graphite graphite growth 

References

  1. 1.
    A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRefGoogle Scholar
  2. 2.
    E. Fraś, M. Górny, H. Lopez, Metall. Mater. Trans. A 38A, 385–395 (2007)CrossRefGoogle Scholar
  3. 3.
    D.K. Bandyopadhyay, D.M. Stefanescu, I. Minkoff, S.K. Biswal, in Physical Metallurgy of Cast Iron IV, ed. by G. Ohira, T. Kusakawa, E. Niyama, Tokyo, Mat. Res. Soc. Proc., Pittsburgh, PA, 1989, p. 27Google Scholar
  4. 4.
    S. Amini, R. Abbaschian, Nucleation and growth kinetics of graphene layers from a molten phase. Carbon 51, 110–123 (2013)CrossRefGoogle Scholar
  5. 5.
    D.M. Stefanescu, G. Alonso, P. Larrañaga, E. De la Fuente, R. Suarez, On the crystallization of graphite from liquid iron–carbon–silicon melts. Acta Mater. 107, 102–126 (2016)CrossRefGoogle Scholar
  6. 6.
    S.E. Franklin, R.A. Stark, Further use of secondary ion mass spectroscopy in the study of graphite morphology control in cast iron, in The Physical Metallurgy of Cast Iron, ed. by H. Fredriksson and M. Hillert, Stockholm, Mat. Res. Soc. Symposia Proc., North-Holland, NY, 1985, pp. 25–35Google Scholar
  7. 7.
    D.M. Stefanescu, G. Alonso, P. Larrañaga, E. De la Fuente, R. Suarez, Reexamination of crystal growth theory of graphite in iron-carbon alloys. Acta Mater. 139, 109–121 (2017)CrossRefGoogle Scholar
  8. 8.
    W.C. O’Mara, Handbook of Semiconductor Silicon Technology. (William Andrew Inc., ISBN 0-8155-1237-6, 1990), pp. 349–352Google Scholar
  9. 9.
    A. Hellawell, The of growth and structure of eutectics with silicon and germanium. Prog. Mater Sci. 15, 3–78 (1970)CrossRefGoogle Scholar
  10. 10.
    C.R. Loper, C.B. Kim, K.M. Htun, R.W. Heine, Analogous solidification in cast irons and aluminum–silicon alloys, in Recent Research on Cast Iron, ed. by H.D. Merchant (Gordon and Breach, New York, 1968), pp. 363–387Google Scholar
  11. 11.
    D.A. Granger, R. Elliott, Aluminum–silicon alloys, in ASM Handbook, vol. 15, Casting, ed. by D.M. Stefanescu (ASM International, Novelty, 1988), pp. 159–168Google Scholar
  12. 12.
    V.L. Davies, J.M. West, Factors affecting modification of aluminium-silicon eutectic. J. Inst. Met. 92, 175 (1963–64)Google Scholar
  13. 13.
    M.G. Day, Primary silicon spherulites in aluminium–silicon alloys. Nature 219, 1357–1358 (1968)CrossRefGoogle Scholar
  14. 14.
    B. Lux, F. Mollard, I. Minkoff, On the formation of envelopes around graphite in cast iron, in The Metallurgy of Cast Iron, ed. by B. Lux, I. Minkoff, F. Mollard (Georgi Publishing Co., St Saphorin, 1974), pp. 371–401Google Scholar
  15. 15.
    H. Nakae, H. Shin, Similarity in solidification mode between Fe–C and Al–Si alloys. Int. J. Cast Met. Res. 11(5), 345–349 (1999)CrossRefGoogle Scholar
  16. 16.
    H. Fredriksson, M. Hillert, N. Lange, The modification of aluminum–silicon alloys by sodium. J. Inst. Met. 101, 285–299 (1973)Google Scholar
  17. 17.
    H. Fredriksson, U. Åkerlind, Solidification and Crystallization Processing in Metals and Alloys (Wiley, London, 2012), p. 486CrossRefGoogle Scholar
  18. 18.
    Y.T. Pei, J.Th.M. De Hosson, Producing functionally graded coatings by laser-powder cladding, JOM-e, 52(1) (2000). www.tms.org/pubs/journals/JOM/0001/Pei/Pei-0001.html
  19. 19.
    K. Fujiwara, K. Maeda, N. Usami, K. Nakajima, Growth mechanism of si-faceted dendrites. Phys. Rev. Lett. 101, 055503 (2008)CrossRefGoogle Scholar
  20. 20.
    E. Tillová, M. Chalupová, L. Hurtalová, Evolution of phases in a recycled Al–Si cast alloy during solution treatment, in Scanning Electron Microscopy, ed. by V. Kazmiruk (InTech, Chapters published March 09, 2012).  https://doi.org/10.5772/34542 Google Scholar
  21. 21.
    D.D. Saratovkin, Dendritic Crystallization (Consultants Bureau, New York, 1959)Google Scholar
  22. 22.
    D.D. Double, A. Hellawell, The structure of flake graphite in Ni–C eutectic alloy. Acta Metall. 17, 1071–1083 (1969)CrossRefGoogle Scholar
  23. 23.
    I. Minkoff, I. Einbinder, Official Exchange Paper—Israel, International Foundry Congress (1963) pp. 139–143Google Scholar
  24. 24.
    B. Lux, I. Minkoff, F. Mollard, E. Thury, Branching of graphite crystals growing from metallic solution, in The Metallurgy of Cast Iron, ed. by B. Lux, I. Minkoff, F. Mollard (Georgi Publishing Co., St Saphorin, 1975), pp. 495–508Google Scholar
  25. 25.
    J.P. Sadocha, J.E. Gruzleski, The mechanism of graphite spheroid formation in pure Fe–C–Si alloys, in The Metallurgy of Cast Iron, ed. by B. Lux, I. Minkoff, F. Mollard (Georgi Publishing Co., St Saphorin, 1975), pp. 443–459Google Scholar
  26. 26.
    V.F. Petrenko, R.W. Whitworth, Physics of Ice (Oxford University Press, ISBN 9780198518945, 1999)Google Scholar
  27. 27.
    R. Hooke, Micrographia (Council of the Royal Society, 1664)Google Scholar
  28. 28.
  29. 29.
    U. Nakaya, Snow Crystals: Natural and Artificial (Cambridge University Press, Cambridge, 1954)CrossRefGoogle Scholar
  30. 30.
    B.J. Mason, Ice, in The Art and Science of Growing Crystals, ed. by J.J. Gilman (Wiley, New York, 1963)Google Scholar
  31. 31.
    C. Magono, C.W. Lee, Meteorological classification of natural snow crystals. J. Fac. Sci. Hokkaido Univ. Jpn. Ser. VII II(4), 321–335 (1966)Google Scholar
  32. 32.
  33. 33.
    J.W. Barrett, H. Garcke, R. Nürnberg, Numerical computations of faceted pattern formation in snow crystal growth. Phys. Rev. E 86, 011604 (2012)CrossRefGoogle Scholar
  34. 34.
    D.H. St, L.M.Hogan John, Metallography and growth crystallography of Al3Ti in Al–Ti alloys up to 5 wt% Ti. J. Cryst. Growth 46, 387–398 (1979)CrossRefGoogle Scholar
  35. 35.
    V.N. Kvasnitsa, V.G. Yatsenko, J.A. Jaszczak, Disclinations in unusual graphite crystals from anorthosites of Ukraine. Can. Mineral. 37, 951–960 (1999)Google Scholar
  36. 36.
    D.D. Double, A. Hellawell, Cone-helix growth forms of graphite. Acta Metall. 22, 481–487 (1974).  https://doi.org/10.1016/0001-6160(74)90101-1 CrossRefGoogle Scholar
  37. 37.
    S. Amelinckx, W. Luyten, T. Krekels, G. Van Tendeloo, J. Van Landuit, Conical, helically wound, graphite whiskers: a limiting member of the “fullerenes”. J. Cryst. Growth 121, 543–558 (1992)CrossRefGoogle Scholar
  38. 38.
    F.C. Frank, The influence of dislocations on crystal growth. Disc. Faraday Soc. 5, 48–54 (1949)CrossRefGoogle Scholar
  39. 39.
    J.A. Jaszczaka, G.W. Robinson, S. Dimovskic, Y. Gogotsic, Naturally occurring graphite cones. Carbon 41, 2085–2092 (2003)CrossRefGoogle Scholar
  40. 40.
    D.D. Li, R.X. Tan, J.X. Gao, B.Q. Wei, Z.Q. Fan, Q.Z. Huang, K.J. He, Comparison of pyrolytic graphite spheres from propylene with spheroidal graphite nodules in steel. Carbon 111, 428–438 (2017)CrossRefGoogle Scholar
  41. 41.
    H. Daniels, R. Brydson, A. Brown, B. Rand, Quantitative valence plasmon mapping in the TEM: viewing physical properties at the nanoscale. Ultramicroscopy 96(3–4), 547–558 (2003).  https://doi.org/10.1016/s0304-3991(03)00115-3 CrossRefGoogle Scholar
  42. 42.
    S.H. Yoon, S.G. Lim, S.H. Hong, W.M. Qiao, D.D. Whitehurst, I. Mochida, B. An, K. Yokogawa, A conceptual model for the structure of catalytically grown carbon nano-fibers. Carbon 43, 1828–1838 (2005)CrossRefGoogle Scholar
  43. 43.
    K. Roesch, Recent developments in the area of malleable cast iron. Stahl Eisen 24, 1747 (1957)Google Scholar
  44. 44.
    K. He, H.R. Daniels, A. Brown, R. Brydson, D.V. Edmonds, An electron microscopic study of spheroidal graphite nodules formed in a medium-carbon steel by annealing. Acta Mater. 55, 2919–2927 (2007)CrossRefGoogle Scholar
  45. 45.
    B. Miao, D.O. Northwood, W. Bian, K. Fang, M. Fan, Structure and growth of platelets in graphite spherulites in cast iron. J. Mater. Sci. 29, 255–261 (1994).  https://doi.org/10.1007/BF00356601 CrossRefGoogle Scholar
  46. 46.
    K. He, A. Brown, R. Brydson, D. Edmonds, Analytical electron microscope study of the dissolution of the Fe3C iron carbide phase (cementite) during a graphitisation anneal of carbon steel. J. Mater. Sci. 41(16), 5235–5241 (2006)CrossRefGoogle Scholar
  47. 47.
    E.V. Zakhartchenko, E.P. Akimov, C.R. Loper, Kish graphite in gray cast iron. AFS Trans. 87, 471–476 (1979)Google Scholar
  48. 48.
    D.M. Stefanescu, R. Huff, G. Alonso, P. Larrañaga, E. De la Fuente, R. Suarez, On the crystallization of compacted and chunky graphite from liquid multicomponent iron–carbon–silicon based melts. Metall. Mater. Trans. 47, 4012–4023 (2016)CrossRefGoogle Scholar
  49. 49.
    K.M. Fang, G.C. Wang, X. Wang, L. Huang, G.D. Deng, The microstructure and metamorphic regularity of graphite in cast iron, in Science and Processing of Cast Iron VIII, ed. by Y.X. Li, H.F. Shen, Q.G. Xu, Z.Q. Han (Tsinghua Univ. Press, Beijing, 2006), pp. 181–187Google Scholar
  50. 50.
    T. Hara, T. Kitagawa, K. Kuroki, S. Saikawa, K. Terayama, S. Ikeno, K. Matsuda, Morphologies of some graphite in ductile iron. Mater. Trans. JIMM 55(9), 1500–1505 (2014)CrossRefGoogle Scholar
  51. 51.
    B. Lux, On the theory of nodular graphite formation in cast iron. Cast Met. Res. J. March 8, 25–28 (1972)Google Scholar
  52. 52.
    B. Lux, Discussion on transition from undercooled to flake graphite, in The Metallurgy of Cast Iron, ed. by B. Lux, I. Minkoff, F. Mollard (Georgi Publishing Co., St Saphorin, 1975), pp. 289–292Google Scholar
  53. 53.
    B. Dhindaw, J.D. Verhoeven, Nodular graphite. Formation in vacuum melted high purity Fe–C–Si alloys. Metall. Trans. A 11A, 1049–1057 (1980)CrossRefGoogle Scholar
  54. 54.
    M.J. Lalich, J.R. Hitchings, Characterization of inclusions as nuclei for spheroidal graphite in ductile cast iron. AFS Trans. 84, 653–664 (1976)Google Scholar
  55. 55.
    K.M. Fang, Atlas of the Morphology and Microstructure of the Graphite in Cast Iron (Science Publ. Co. of China, 2000)Google Scholar
  56. 56.
    M. Hamasumi, A newly observed pattern of imperfect graphite spherulite in nodular iron. Trans. JIM 6, 234–239 (1965)CrossRefGoogle Scholar
  57. 57.
    G.R. Purdy, M. Audier, Electron microscopical observations of graphite in cast irons, in The Physical Metallurgy of Cast Iron, ed. by H. Fredriksson, M. Hillert Stockholm, Mat. Res. Soc. Symposia Proc., North-Holland, NY, 1985, pp. 13–23Google Scholar
  58. 58.
    D. Ugarte, Curling and closure of graphitic networks under electron-beam irradiation. Nature 359, 707–709 (1992)CrossRefGoogle Scholar
  59. 59.
    D.D. Double, A. Hellawell, Growth structure of various forms of graphite, in The Metallurgy of Cast Iron, ed. by B. Lux, I. Minkoff, F. Mollard (Georgi Publishing Co., St Saphorin, 1975), pp. 509–528Google Scholar
  60. 60.
    J.P. Monchoux, C. Verdu, G. Thollet, R. Fougères, A. Reynaud, Morphological changes of graphite spheroids during heat treatment of ductile cast irons. Acta Mater. 49, 4355–4362 (2001)CrossRefGoogle Scholar
  61. 61.
    J. Qing, V.L. Richards, D.C. Van Aken, Growth stages and hexagonal-rhombohedral structural arrangements in spheroidal graphite observed in ductile iron. Carbon 116, 456–469 (2017)CrossRefGoogle Scholar
  62. 62.
    K. Theuwissen, J. Lacaze, L. Laffont, Structure of graphite precipitates in cast iron. Carbon 96, 1120–11286 (2016)CrossRefGoogle Scholar
  63. 63.
    D.D. Li, R.X. Tan, J.X. Gao, B.Q. Wei, Z.Q. Fan, Q.Z. Huang, K.J. He, Comparison of pyrolytic graphite spheres from propylene with spheroidal graphite nodules in steel. Carbon 111, 428–438 (2017)CrossRefGoogle Scholar
  64. 64.
    H. Itofuji, H. Uchikawa, Trans. AFS 98, 429–448 (1990)Google Scholar
  65. 65.
    J.F. Ellis, C.K. Donoho, Magnesium content and graphite forms in cast iron. AFS Trans. 66, 203–209 (1958)Google Scholar
  66. 66.
    P.K. Basutkar, C.S. Park, R.E. Miller, C.R. Loper, Formation of spiky graphite in high magnesium ductile iron castings. AFS Trans. 81, 180–184 (1973)Google Scholar
  67. 67.
    E.N. Pan, C.N. Lin, H.S. Chiou, Effects of lead and solidification conditions on graphite structure of heavy-section DI. AFS Trans. 103, 265–273 (1995)Google Scholar
  68. 68.
    R.K. Buhr, The effects of Pb, Sb, Bi and Ce on microstructure of heavy section nodular iron castings. AFS Trans. 79, 247–252 (1971)Google Scholar
  69. 69.
    A. Javaid, C.R. Loper, Production of heavy-section ductile cast iron. AFS Trans. 103, 135–150 (1995)Google Scholar
  70. 70.
    B. Tonn, J. Lacaze, S. Duwe, Degenerated graphite growth in ductile iron, in: Science and Processing of Cast Iron, Jönköping, Sweden, 2017Google Scholar
  71. 71.
    I. Minkoff, The Physical Metallurgy of Cast Iron (Wiley, New York, 1983)Google Scholar
  72. 72.
    R. Elliott, Eutectic Solidification Processing (Butterworth, London, 1983)Google Scholar
  73. 73.
    D.M. Stefanescu, Cast Iron, in ASM Handbook, vol. 15, Casting, ed. by D.M. Stefanescu (ASM International, Metals Park, 1988), pp. 168–181Google Scholar
  74. 74.
    C.A. van den Velde, A new approach to the solidification of ductile iron, in The Ductile Iron Society’s 1998 Keith D. Millis World Symposium on Ductile Iron, Hilton Head, S. Carolina 1998, pp. 143–187Google Scholar
  75. 75.
    D.M. Stefanescu, Science and Engineering of Casting Solidification, 3rd edn. (Springer, Berlin, 2015), pp. 454–479CrossRefGoogle Scholar
  76. 76.
    J. Lacaze, J. Bourdie, M.J. Castro-Roman, A 2-D nucleation-growth model of spheroidal graphite. Acta Mater. 34, 230–235 (2017)CrossRefGoogle Scholar
  77. 77.
    M.B. Haanstra, W.F. Knippenber, G. Verspui, in Proceedings of the 5th European Congress on Electron Microscopy, Manchester, Institute of Physics, 1972, p. 214Google Scholar
  78. 78.
    I. Minkoff, The spherulitic growth in graphite, in The Physical Metallurgy of Cast Iron, ed. by H. Fredriksson, M. Hillert, Stockholm, Mat. Res. Soc. Symposia Proc., North-Holland, NY, 1985, pp. 37–45Google Scholar
  79. 79.
    P.C. Liu, C.R. Loper, T. Kimura, H.K. Park, Observations on the graphite morphology in cast iron. AFS Trans. 88, 97–118 (1980)Google Scholar
  80. 80.
    P.C. Liu, C.L. Li, D.H. Wu, C.R. Loper, SEM study of chunky graphite in heavy section ductile iron. AFS Trans. 91, 119–126 (1983)Google Scholar
  81. 81.
    A.N. Roviglione, J.D. Hermida, From flake to nodular: a new theory of morphological modification in gray cast iron. Metall. Mater. Trans. 35B, 313–330 (2004)CrossRefGoogle Scholar
  82. 82.
    W.L. Guesser, C.S. Cabezas, L.C. Guedes, A.M. Zanatta, High temperature strength of cast irons for cylinder heads, in Science and Processing of Cast Iron, Jönköping, Sweden, 2017Google Scholar
  83. 83.
    E. Moumeni, N.S. Tiedje, A. Horsewell, J.H Hattel, A TEM Study on the Microstructure of Fine Flaky Graphite, in 52nd International Foundry Conference, Portoroz, Slovenia, 2012Google Scholar
  84. 84.
    J. Qing, V.L. Richards, D.C. Van Aken, Examination of austenite solidification and spheroidal graphite growth in Ni–Fe–C alloys, in Advances in the Science and Engineering of Casting Solidification, ed. by L. Nastac et al. (TMS, Wiley, Hoboken, New Jersey, 2015), pp. 277–285CrossRefGoogle Scholar
  85. 85.
    K. Yamane, H. Yasuda, A. Sugiyama, T. Nagira, M. Yoshiya, K. Morishita, K. Uesugi, A. Takeuchi, Y. Suzuki, Influence of Mg on solidification of hypereutectic cast iron: x-ray radiography study. Metall. Mater. Trans. A 46A, 4937–4946 (2015)CrossRefGoogle Scholar
  86. 86.
    F.C. Frank, in Growth and Perfection of Crystals,ed. by R.H. Doremus, B.W. Roberts, D. Turnbull (Wiley, New York, 1958)Google Scholar
  87. 87.
    R.H. McSwain, C.E. Bates, Surface and interfacial energy relationships controlling graphite formation in cast iron, in The Metallurgy of Cast Iron, ed. by B. Lux, I. Minkoff, F. Mollard (Georgi Publishing, St. Saphorin, 1975), pp. 423–442Google Scholar
  88. 88.
    S.V. Subramanian, D.A.R. Kay, G.R. Purdy, Graphite morphology control in cast iron, in The Physical Metallurgy of Cast Iron, ed. by H. Fredriksson, M. Hillert, Stockholm, Mat. Res. Soc. Symposia Proc., North-Holland, NY, 1985, pp.47–56Google Scholar
  89. 89.
    G.H. Gilmer, in Modeling of Casting and Welding Processes, ed. by H.D. Brody, D. Apelian, (Metallurgical Soc. of AIME, 1981), pp. 385–401, ISBN-10: 0895203804Google Scholar
  90. 90.
    W.C. Johnson, H.B. Smartt, The role of interphase boundary adsorption in the formation of spheroidal graphite in cast iron. Metall. Trans. A 8A, 553–565 (1977)CrossRefGoogle Scholar
  91. 91.
    W.C. Johnson, H.B. Smartt, in Solidification and Casting of Metals (The Metal Society, 1979), Book No. 192 p. 129Google Scholar
  92. 92.
    J.S. Park, J.D. Verhoeven, Transitions between Type A flake, Type D flake, and coral graphite eutectic structures in cast irons. Metall. Mater. Trans. A 27A, 2740–2753 (1996)CrossRefGoogle Scholar
  93. 93.
    H.M. Muhmond, H. Fredriksson, Relationship between the trace elements and graphite growth morphologies in cast iron. Metall. Mater. Trans. 45A, 6187–6199 (2014)CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2018

Authors and Affiliations

  • D. M. Stefanescu
    • 1
    • 2
  • G. Alonso
    • 3
  • P. Larrañaga
    • 3
  • E. De la Fuente
    • 4
  • R. Suarez
    • 3
    • 4
  1. 1.Ohio State UniversityColumbusUSA
  2. 2.University of AlabamaTuscaloosaUSA
  3. 3.IK4-AzterlanDurangoSpain
  4. 4.Veigalan Estudio 2010 S.L.UDurangoSpain

Personalised recommendations