Hypoeutectic Aluminum–Silicon Alloy Development for GMAW-Based 3-D Printing Using Wedge Castings

  • Amberlee S. Haselhuhn
  • Paul G. Sanders
  • Joshua M. Pearce
Article

Abstract

Alloy development can simplify low-cost gas metal arc weld (GMAW)-based 3-D printing by making it easier to print quality parts with minimal metallurgical or welding experience. Previous work found good properties in aluminum alloys, particularly in the aluminum–silicon 4943 (Al–5.5%Si–0.4%Mg) and 4047 (Al–11.6%Si) alloys. These alloys were easy to print, but could benefit from alloying to increase ductility and to minimize or redistribute porosity. The purpose of this study was to modify 4943 and 4047 alloys and rapidly screen their performance for use as feedstock for improved 3-D printability. The 4047- and 4943-based alloys were modified with additions of magnesium, strontium, titanium boride, and combinations thereof. Wedge-shaped castings were used to efficiently screen alloying additions over the same ranges of solidification rates as those observed in GMAW-based 3-D printing. The alloying additions were most effective at modifying the high-silicon 4047 alloy, whereas no change in microstructure was observed in the low-silicon 4943 alloy. Strontium was an effective modifier of the high-silicon alloy. Titanium boride was not observed to have a grain-refining effect on aluminum dendrites on its own, although the combination of strontium and titanium boride produced the most refined eutectic structure in the high-silicon alloy. Future work should evaluate the singular effects of strontium, titanium boride, and the combination of strontium and titanium boride additions in weld-based 3-D printing.

Keywords

3-D printing additive manufacturing aluminum alloy development metal casting casting 

References

  1. 1.
    L.E. Murr, E. Martinez, K.N. Amato, S.M. Gaytan, J. Hernandez, D.A. Ramirez, R.B. Wicker, Fabrication of metal and alloy components by additive manufacturing: examples of 3D materials science. J. Mater. Res. Technol. 1(1), 42–54 (2012)CrossRefGoogle Scholar
  2. 2.
    T. Wohlers, T. Caffrey, Wohlers Report 2014 Annual Worldwide Progress Report (Wohlers Associates, Inc., Fort Collins, CO, 2014)Google Scholar
  3. 3.
    W.E. Frazier, Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23(6), 1917–1928 (2014)CrossRefGoogle Scholar
  4. 4.
    T.J. Horn, O.L.A. Harrysson, Overview of current additive manufacturing technologies and selected applications. Sci. Prog. 95(3), 255–282 (2012)CrossRefGoogle Scholar
  5. 5.
    T. Wohlers, T. Caffrey, Wohlers Report 2015 Annual Worldwide Progress Report (Wohlers Associates, Inc., Fort Collins, CO, 2015)Google Scholar
  6. 6.
    L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, R.B. Wicker, Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Technol. 28(1), 1–14 (2012)CrossRefGoogle Scholar
  7. 7.
    K. M. B. Taminger, R.A. Hafley, Electron beam freeform fabrication: a rapid metal deposition process, in Presented at the 3rd annual automotive composites conference, Troy, MI: Society of Plastics Engineers, Inc (2003)Google Scholar
  8. 8.
    J.P. Kruth, Material incress manufacturing by rapid prototyping techniques. CIRP Ann. Manuf. Technol. 40(2), 603–614 (1991)CrossRefGoogle Scholar
  9. 9.
    J. Peels, Metal 3D printing: From lab to fab. Inside 3DP, (2014), www.inside3dp.com/metal-3d-pinting-lab-fab/. Last Accessed 22 Mar 2016
  10. 10.
    G.C. Anzalone, C. Zhang, B. Wijnen, P.G. Sanders, J.M. Pearce, A low-cost open-source metal 3-D printer. IEEE Access 1, 803–810 (2013)CrossRefGoogle Scholar
  11. 11.
    A. Pinar, B. Wijnen, G.C. Anzalone, T.C. Havens, P.G. Sanders, J.M. Pearce, Low-cost open-source voltage and current monitor for gas metal arc weld 3D printing. J. Sens. 876714, 2015 (2015). doi:10.1155/2015/876714 Google Scholar
  12. 12.
    Y. Nilsiam, A. Haselhuhn, B. Wijnen, P. Sanders, J.M. Pearce, Integrated voltage–current monitoring and control of gas metal arc weld magnetic ball-jointed open source 3-D printer. Machines 3(4), 339–351 (2015)CrossRefGoogle Scholar
  13. 13.
    B. Wijnen, G.C. Anzalone, A.S. Haselhuhn, P.G. Sanders, J.M. Pearce, Free and open-source control software for 3-D motion and processing. J. Open Res. Softw. 4(1), 4:e2 (2016). doi:10.5334/jors.78 Google Scholar
  14. 14.
    Sciaky, Inc. Advantages of wire AM vs. powder AM, (2016), http://www.sciaky.com/additive-manufacturing/wire-am-vs-powder-am. Last Accessed 22 Mar 2016
  15. 15.
    A. Ujiie, U.S. Patent No. 3,665,143. (Published May 23, 1972). Washington, DC: U.S. Patent and Trademark Office (1972)Google Scholar
  16. 16.
    H.T. Brandi, H. Luckow, U.S. Patent No. 3,985,995, (Published October 12, 1976). Washington, DC: U.S. Patent and Trademark Office (1976)Google Scholar
  17. 17.
    D. Ding, Z. Pan, D. Cuiuri, H. Li, A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM). Robot. Comput. Integr. Manuf. 31, 101–110 (2015)CrossRefGoogle Scholar
  18. 18.
    J.F. Lancaster, Metallurgy of Welding (Chapman & Hall, London, 1993)Google Scholar
  19. 19.
    A.S. Haselhuhn, E.J. Gooding, A.G. Glover, G.C. Anzalone, B. Wijnen, P.G. Sanders, J.M. Pearce, Substrate release mechanisms for gas metal arc weld 3D aluminum metal printing. 3D Print. Addit. Manuf. 1(4), 204–209 (2014)CrossRefGoogle Scholar
  20. 20.
    A.S. Haselhuhn, B. Wijnen, G.C. Anzalone, P.G. Sanders, J.M. Pearce, In situ formation of substrate release mechanisms for gas metal arc weld metal 3-D printing. J. Mater. Process. Technol. 226, 50–59 (2015)CrossRefGoogle Scholar
  21. 21.
    A.S. Haselhuhn, M.W. Buhr, B. Wijnen, P.G. Sanders, J.M. Pearce, Structure-property relationships of common aluminum weld alloys utilized as feedstock for GMAW-based 3-D printing. Mater. Sci. Eng. A 673, 511–523 (2016)CrossRefGoogle Scholar
  22. 22.
    A.K. Dahle, K. Nogita, S.D. McDonald, C. Dinnis, L. Lu, Eutectic modification and microstructure development in Al–Si Alloys. Mater. Sci. Eng. A 413–414, 243–248 (2005)CrossRefGoogle Scholar
  23. 23.
    A. Pacz, U.S. Patent No. 1387900A. (Published August 16, 1921). Washington, DC: U.S. Patent and Trademark Office (1920)Google Scholar
  24. 24.
    S.C. Flood, J.D. Hunt, Modification of Al–Si eutectic alloys with Na. Met. Sci. 15(7), 287–294 (1981)CrossRefGoogle Scholar
  25. 25.
    C.E. Cross, D.L. Olson, Modification of eutectic weld metal microstructure. Weld. J. 61, 381s–387s (1982)Google Scholar
  26. 26.
    S.-Z. Lu, A. Hellawell, The mechanism of silicon modification in aluminum–silicon alloys: impurity induced twinning. Metall. Trans. A 18(10), 1721–1733 (1987)CrossRefGoogle Scholar
  27. 27.
    Liu Qiyang, Li Qingchun, Liu Qifu, Modification of Al–Si alloys with sodium. Acta Metall. Mater. 39(11), 2497–2502 (1991)CrossRefGoogle Scholar
  28. 28.
    S.-Z. Lu, A. Hellawell, Modification of Al–Si alloys: microstructure, thermal analysis, and mechanisms. JOM 47(2), 38–40 (1995)CrossRefGoogle Scholar
  29. 29.
    H. Liao, G. Dong, G. Sun, Investigation on influence of sodium- or strontium-modification on corrosion-resistance of Al–11.7%Si alloy. J. Mater. Sci. 42(13), 5175–5181 (2007)CrossRefGoogle Scholar
  30. 30.
    L. Lu, K. Nogita, A.K. Dahle, Combining Sr and Na additions in hypoeutectic Al–Si foundry alloys. Mater. Sci. Eng. A 399(1–2), 244–253 (2005)CrossRefGoogle Scholar
  31. 31.
    N.S. Tiedje, J.A. Taylor, M.A. Easton, Feeding and distribution of porosity in cast Al–Si alloys as function of alloy composition and modification. Metall. Mater. Trans. A 43(12), 4846–4858 (2012)CrossRefGoogle Scholar
  32. 32.
    S.-S. Shin, E.-S. Kim, G.-Y. Yeom, J.-C. Lee, Modification effect of Sr on the microstructures and mechanical properties of Al–10.5Si–2.0Cu recycled alloy for die casting. Mater. Sci. Eng. A 532, 151–157 (2012)CrossRefGoogle Scholar
  33. 33.
    C.M. Dinnis, A.K. Dahle, J.A. Taylor, M.O. Otte, The influence of strontium on porosity formation in Al–Si alloys. Metall. Mater. Trans. A. 35(11), 3531–3541 (2004)CrossRefGoogle Scholar
  34. 34.
    P. Srirangam, M.J. Kramer, S. Shankar, Effect of strontium on liquid structure of Al–Si hypoeutectic alloys using high-energy X-ray diffraction. Acta Mater. 59(2), 503–513 (2011)CrossRefGoogle Scholar
  35. 35.
    P. Srirangam, S. Chattopadhyay, A. Bhattacharya, S. Nag, J. Kaduk, S. Shankar, T. Shibata, Probing the local atomic structure of Sr-modified Al–Si alloys. Acta Mater. 65, 185–193 (2014)CrossRefGoogle Scholar
  36. 36.
    D.L. Zhang, B. Cantor, Heterogeneous nucleation of solidification of Si by solid AI in hypoeutectic Al-Si alloy. Metall. Trans. A 24(5), 1195–1204 (1993)CrossRefGoogle Scholar
  37. 37.
    N. Fatahalla, M. Hafiz, M. Abdulkhalek, Effect of microstructure on the mechanical properties and fracture of commercial hypoeutectic Al–Si alloy modified with Na, Sb and Sr. J. Mater. Sci. 34(14), 3555–3564 (1999)CrossRefGoogle Scholar
  38. 38.
    M. Zarif, B. McKay, J. Li, P. Schumacher, Study of the effect of strontium (Sr) on the nucleation of eutectic silicon (Si) in high purity hypoeutectic Al–5Si alloys. BHM Berg-Huettenmaenn. Monatsh. 155(11), 506–511 (2010)CrossRefGoogle Scholar
  39. 39.
    M. Zarif, B. Mckay, P. Schumacher, Study of heterogeneous nucleation of eutectic Si in high-purity Al–Si alloys with Sr addition. Metall. Mater. Trans. A 42(6), 1684–1691 (2011)CrossRefGoogle Scholar
  40. 40.
    L. Liu, A.M. Samuel, F.H. Samuel, H.W. Doty, S. Valtierra, Characteristics of α-dendritic and eutectic structures in Sr-treated Al–Si casting alloys. J. Mater. Sci. 39(1), 215–224 (2004)CrossRefGoogle Scholar
  41. 41.
    S. Nafisi, R. Ghomashchi, H. Vali, Eutectic nucleation in hypoeutectic Al–Si alloys. Mater. Charact. 59(10), 1466–1473 (2008)CrossRefGoogle Scholar
  42. 42.
    G. Heiberg, L. Arnberg, Investigation of the microstructure of the Al–Si eutectic in binary aluminium–7 wt% silicon alloys by electron backscatter diffraction (EBSD). J. Light Met. 1(1), 43–49 (2001)CrossRefGoogle Scholar
  43. 43.
    S.S. Sreeja Kumari, R.M. Pillai, T.P.D. Rajan, B.C. Pai, Effects of individual and combined additions of Be, Mn, Ca and Sr on the solidification behaviour, structure and mechanical properties of Al–7Si–0.3Mg–0.8Fe alloy. Mater. Sci. Eng. A 460–461, 561–573 (2007)CrossRefGoogle Scholar
  44. 44.
    S.S.S. Sreeja Kumari, R.M. Pillai, B.C. Pai, Structure and properties of calcium and strontium treated Al–7Si–0.3Mg alloy: a comparison. J. Alloys Compd. 460(1–2), 472–477 (2008)CrossRefGoogle Scholar
  45. 45.
    G. Heiberg, K. Nogita, A.K. Dahle, L. Arnberg, Columnar to equiaxed transition of eutectic in hypoeutectic aluminium–silicon alloys. Acta Mater. 50(10), 2537–2546 (2002)CrossRefGoogle Scholar
  46. 46.
    C.M. Dinnis, A.K. Dahle, J.A. Taylor, Three-dimensional analysis of eutectic grains in hypoeutectic Al–Si alloys. Mater. Sci. Eng. A 392(1–2), 440–448 (2005)CrossRefGoogle Scholar
  47. 47.
    S.G. Shabestari, M. Keshavarz, M.M. Hejazi, Effect of strontium on the kinetics of formation and segregation of intermetallic compounds in A380 aluminum alloy. J. Alloys Compd. 477(1–2), 892–899 (2009)CrossRefGoogle Scholar
  48. 48.
    L. Heusler, W. Schneider, Influence of alloying elements on the thermal analysis results of Al–Si cast alloys. J. Light Met. 2(1), 17–26 (2002)CrossRefGoogle Scholar
  49. 49.
    B. Kulunk, D.J. Zuliani, Applications for the strontium treatment of wrought and die-cast Al. JOM 48(10), 60–63 (1996)CrossRefGoogle Scholar
  50. 50.
    S.D. McDonald, A.K. Dahle, J.A. Taylor, D.H. St. John, Eutectic grains in unmodified and strontium-modified hypoeutectic aluminum-silicon alloys. Metall. Mater. Trans. A 35(6), 1829–1837 (2004)CrossRefGoogle Scholar
  51. 51.
    M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamoto, N. Lazarev, D. Isheim, J. Banhart, The role of strontium in modifying aluminium–silicon alloys. Acta Mater. 60(9), 3920–3928 (2012)CrossRefGoogle Scholar
  52. 52.
    K. Nogita, H. Yasuda, K. Yoshida, K. Uesugi, A. Takeuchi, Y. Suzuki, A.K. Dahle, Determination of strontium segregation in modified hypoeutectic Al–Si alloy by micro X-ray fluorescence analysis. Scr. Mater. 55(9), 787–790 (2006)CrossRefGoogle Scholar
  53. 53.
    A.K. Dahle, K. Nogita, S.D. McDonald, J.W. Zindel, L.M. Hogan, Eutectic nucleation and growth in hypoeutectic Al–Si alloys at different strontium levels. Metall. Mater. Trans. A. 32(4), 949–960 (2001)CrossRefGoogle Scholar
  54. 54.
    Y.H. Cho, H.-C. Lee, K.H. Oh, A.K. Dahle, Effect of strontium and phosphorus on eutectic Al–Si nucleation and formation of β-Al5FeSi in hypoeutectic Al–Si foundry alloys. Metall. Mater. Trans. A. 39(10), 2435–2448 (2008)CrossRefGoogle Scholar
  55. 55.
    S.D. McDonald, A.K. Dahle, J.A. Taylor, D.H. St. John, Modification-related porosity formation in hypoeutectic aluminum–silicon alloys. Metall. Mater. Trans. B. 35(6), 1097–1106 (2004)CrossRefGoogle Scholar
  56. 56.
    S.D. McDonald, K. Nogita, A.K. Dahle, Eutectic grain size and strontium concentration in hypoeutectic aluminium–silicon alloys. J. Alloys Compd. 422(1–2), 184–191 (2006)CrossRefGoogle Scholar
  57. 57.
    H. Liao, Y. Sun, G. Sun, Correlation between mechanical properties and amount of dendritic α-Al phase in as-cast near-eutectic Al–11.6% Si alloys modified with strontium. Mater. Sci. Eng. A 335(1–2), 62–66 (2002)CrossRefGoogle Scholar
  58. 58.
    M.M. Haque, M.A. Maleque, Effect of process variables on structure and properties of aluminium–silicon piston alloy. J. Mater. Process. Technol. 77(1–3), 122–128 (1998)CrossRefGoogle Scholar
  59. 59.
    M. Easton, D. StJohn, Grain refinement of aluminum alloys: part I. The nucleant and solute paradigms—a review of the literature. Metall. Mater. Trans. A 30(6), 1613–1623 (1999)CrossRefGoogle Scholar
  60. 60.
    M. Easton, D. StJohn, Grain refinement of aluminum alloys: part II. Confirmation of, and a mechanism for, the solute paradigm. Metall. Mater. Trans. A 30(6), 1625–1633 (1999)CrossRefGoogle Scholar
  61. 61.
    L. Lu, A.K. Dahle, Effects of combined additions of Sr and AlTiB grain refiners in hypoeutectic Al–Si foundry alloys. Mater. Sci. Eng. A 435–436, 288–296 (2006)CrossRefGoogle Scholar
  62. 62.
    D.G. Mallapur, S.A. Kori, K.R. Udupa, Influence of Ti, B and Sr on the microstructure and mechanical properties of A356 alloy. J. Mater. Sci. 46(6), 1622–1627 (2010)CrossRefGoogle Scholar
  63. 63.
    B.S. Murty, S.A. Kori, M. Chakraborty, Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying. Int. Mater. Rev. 47(1), 3–29 (2002)CrossRefGoogle Scholar
  64. 64.
    Y.C. Lee, A.K. Dahle, D.H. StJohn, J.E.C. Hutt, The effect of grain refinement and silicon content on grain formation in hypoeutectic Al–Si alloys. Mater. Sci. Eng. A 259(1), 43–52 (1999)CrossRefGoogle Scholar
  65. 65.
    R.P. Martukanitz, Selection and weldability of heat-treatable aluminum alloys. ASM Handb. 6, 528–536 (1993)Google Scholar
  66. 66.
    P.B. Dickerson, Welding of aluminum alloys. ASM Handb. 6, 722–739 (1993)Google Scholar
  67. 67.
    M.J. Caton, J.W. Jones, J.M. Boileau, J.E. Allison, The effect of solidification rate on the growth of small fatigue cracks in a cast 319-type aluminum alloy. Metall. Mater. Trans. A. 30(12), 3055–3068 (1999)CrossRefGoogle Scholar
  68. 68.
    J.M. Boileau, J.E. Allison, The effect of solidification time and heat treatment on the fatigue properties of a cast 319 aluminum alloy. Metall. Mater. Trans. A. 34(9), 1807–1820 (2003)CrossRefGoogle Scholar
  69. 69.
    I.C. Stone, H. Jones, Effect of cooling rate and front velocity on solidification micro structure selection in Al–3.5 wt% Fe–0 to 8.5 wt% Si alloys. Mater. Sci. Eng. A 226, 33–37 (1997)CrossRefGoogle Scholar
  70. 70.
    M.F. Ourfali, I. Todd, H. Jones, Effect of solidification cooling rate on the morphology and number per unit volume of primary Mg2Si particles in a hypereutectic Al–Mg–Si alloy. Metall. Mater. Trans. A. 36(5), 1368–1372 (2005)CrossRefGoogle Scholar
  71. 71.
    J. Zhang, Z. Fan, Y.Q. Wang, B.L. Zhou, Effect of cooling rate on the microstructure of hypereutectic Al-Mg2Si alloys. J. Mater. Sci. Lett. 19(20), 1825–1828 (2000)CrossRefGoogle Scholar
  72. 72.
    J.A. Juarez-Islas, D.H. Warrington, H. Jones, Formation of stable and metastable phases in Al–Mn alloys by the use of a gravity chill casting technique. J. Mater. Sci. 24(6), 2076–2080 (1989)CrossRefGoogle Scholar
  73. 73.
    A. Hawksworth, W.M. Rainforth, H. Jones, Solidification microstructure selection in the Al-rich Al–La, Al–Ce and Al–Nd systems. J. Cryst. Growth 197(1), 286–296 (1999)CrossRefGoogle Scholar
  74. 74.
    J.H. Perepezko, K. Hildal, Analysis of solidification microstructures during wedge-casting. Philos. Mag. 86(24), 3681–3701 (2006)CrossRefGoogle Scholar
  75. 75.
    A.F. Norman, P.B. Prangnell, R.S. McEwen, The solidification behaviour of dilute aluminum–scandium alloys. Acta Mater. 46(16), 5715–5732 (1998)CrossRefGoogle Scholar
  76. 76.
    A.F. Norman, K. Hyde, F. Costello, S. Thompson, S. Birley, P.B. Prangnell, Examination of the effect of Sc on 2000 and 7000 series aluminium castings: for improvements in fusion welding. Mater. Sci. Eng. A 354(1–2), 188–198 (2003)CrossRefGoogle Scholar
  77. 77.
    W. S. Rasband, Image J., U.S. National Institutes of Health, Bethsesda, Maryland, USA, http://imagej.nih.gov/ig/, 1997–2014
  78. 78.
    D. Bouchard, J.S. Kirkaldy, Prediction of dendrite arm spacings in unsteady- and steady-state heat flow of unidirectionally solidified binary alloys. Metall. Mater. Trans. B 28(4), 651–663 (1997)CrossRefGoogle Scholar
  79. 79.
    S. Su, X. Liang, A. Moran, E.J. Lavernia, Solidification behavior of an Al–6Si alloy during spray atomization and deposition. Int. J. Rapid Solidif. 8(3), 161–177 (1994)Google Scholar
  80. 80.
    D.W. Heard, S. Brophy, M. Brochu, Solid freeform fabrication of Al–Si components via the CSC-MIG process. Can. Metall. Q. 51(3), 302–312 (2012)CrossRefGoogle Scholar
  81. 81.
    ASTM B557-02. Standard test methods for tension testing wrought and cast aluminum- and magnesium-alloy products. ASTM International, West Conshohocken, PA, 2013, www.astm.org
  82. 82.
    Q.G. Wang, Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357. Metall. Mater. Trans. A. 34, 2887–2899 (2003)CrossRefGoogle Scholar
  83. 83.
    Q.G. Wang, C.J. Davidson, Solidification and precipitation behaviour of Al–Si–Mg casting alloys. J. Mater. Sci. 36(3), 739–750 (2001)CrossRefGoogle Scholar
  84. 84.
    S. Kou, Welding Metallurgy (Wiley, New York, 1987)Google Scholar
  85. 85.
    M. Tiryakioglu, J.T. Staley, Physical metallurgy and the effect of alloying additions in aluminum alloys, in Handbook of Aluminum, vol. 1, ed. by G.E. Totten, D.S. MacKenzie (Marcel Dekker Inc, New York, 2003), pp. 81–209Google Scholar
  86. 86.
    Q.G. Wang, C.H. Caceres, J.R. Griffiths, Damage by eutectic particle cracking in aluminum casting alloys A356/357. Metall. Mater. Trans. A 34, 2901–2912 (2003)CrossRefGoogle Scholar
  87. 87.
    M. Drouzy, S. Jacob, M. Richard, Interpretation of tensile results by means of quality index and probable yield strength—application to Al–Si Mg foundry alloys—France. Int. Cast Met. J. 5(2), 43–50 (1980)Google Scholar
  88. 88.
    M. Tiryakioglu, J. Campbell, Quality index for aluminum alloy castings. Int. J. Metalcast. 8(3), 39–42 (2014)CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2017

Authors and Affiliations

  • Amberlee S. Haselhuhn
    • 1
  • Paul G. Sanders
    • 1
  • Joshua M. Pearce
    • 1
    • 2
  1. 1.Department of Materials Science and EngineeringMichigan Technological UniversityHoughtonUSA
  2. 2.Department of Electrical and Computer EngineeringMichigan Technological UniversityHoughtonUSA

Personalised recommendations